bow lsa plsa
Bag-of-Words (BoW) 模型是NLP和IR领域中的一个基本假设。在这个模型中,一个文档(document)被表示为一组单词(word/term)的无序组合,而忽略了语法或者词序的部分。BOW在传统NLP领域取得了巨大的成功,在计算机视觉领域(Computer Vision)也开始崭露头角,但在实际应用过程中,它却有一些不可避免的缺陷,比如:
- 稀疏性(Sparseness): 对于大词典,尤其是包括了生僻字的词典,文档稀疏性不可避免;
- 多义词(Polysem): 一词多义在文档中是常见的现象,BOW模型只统计单词出现的次数,而忽略了他们之间的区别;
- 同义词(Synonym): 同样的,在不同的文档中,或者在相同的文档中,可以有多个单词表示同一个意思;
从同义词和多义词问题我们可以看到,单词也许不是文档的最基本组成元素,在单词与文档之间还有一层隐含的关系,我们称之为主题(Topic)。我们在写文章时,首先想到的是文章的主题,然后才根据主题选择合适的单词来表达自己的观点。在BOW模型中引入Topic的因素,成为了大家研究的方向,这就是我们要讲的Latent Semantic Analysis (LSA) 和 probabilitistic Latent Semantic Analysis (pLSA),至于更复杂的LDA和众多其他的Topic Models,以后再详细研究。
LSA简介
LSA的基本思想就是,将document从稀疏的高维Vocabulary空间映射到一个低维的向量空间,我们称之为隐含语义空间(Latent Semantic Space).
http://blog.csdn.net/zhoubl668/article/details/7881318
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· Docker 太简单,K8s 太复杂?w7panel 让容器管理更轻松!