推荐系统与算法
场景主要负责对用户意图的识别,对于场景的判断,需要结合用户的实时行为,来明确用户的意图是发散还是聚焦的,不同的场景采用不同的算法进行组装,比如在首页或者频道栏用户的目的性不是那么强,为了增加用户的粘性,可以基于标签分类的推荐、协同过滤、最新最热等的算法进行推荐。在用户浏览到某一应用的详情页,那么用户的意图比较明显,可以基于内容的和关联规则的算法给用户推荐应用。在下载进行或者完成后,可以用采用基于Item的协同过滤、最新最热算法进行推荐。还有一种方式是以PUSH推送客户端的方式为用户精准的推送,可以融合推广、协同过滤、最新最热等算法。
http://blog.csdn.net/yangbutao/article/details/42319317
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· Docker 太简单,K8s 太复杂?w7panel 让容器管理更轻松!