TensorFlow学习笔记12-word2vec模型
为什么学习word2word2vec模型?
该模型用来学习文字的向量表示。图像和音频可以直接处理原始像素点和音频中功率谱密度的强度值,
把它们直接编码成向量数据集。但在"自然语言处理"中,对语句中的单词(Word)进行编码,无法提供
不同词汇之间的关联信息。这种"独立的、离散的"符号将导致数据稀疏,训练模型时将必须寻求更多
数据。word2vec旨在克服上述问题。
向量空间模型(VSMs)将语义近似的词汇映射为相邻的数据点,它假设出现于上下文情景中的词汇有相
类似的语义。采用该假设的研究方法分为:1. 基于计数的方法(计算词汇与邻近词汇在语料库中共同
出现的频率,并将其映射到小型且稠密的向量中);2. 预测方法(直接从词汇的邻近词汇进行预测,利
用已学习到的小型且稠密的嵌套向量)。
Word2vec是一种可以进行高效率词嵌套学习的预测模型。其两种变体分别为:连续词袋模型(CBOW)
及Skip-Gram模型。从算法角度看,这两种方法非常相似,其区别为CBOW根据源词上下文词汇('the
cat sits on the')来预测目标词汇(例如,‘mat’),而Skip-Gram模型做法相反,它通过目标
词汇来预测源词汇。Skip-Gram模型采取CBOW的逆过程的动机在于:CBOW算法对于很多分布式信息
进行了平滑处理(例如将一整段上下文信息视为一个单一观察量)。很多情况下,对于小型的数据
集,这一处理是有帮助的。相形之下,Skip-Gram模型将每个“上下文-目标词汇”的组合视为一个新
观察量,这种做法在大型数据集中会更为有效。本教程余下部分将着重讲解Skip-Gram模型。
概率化语言模型
通常使用极大似然法 (ML) 进行训练,其中通过 softmax function 来最大化当提供前一个单词
(或几个单词构成的)上下文环境h(代表 "history")中,后一个单词的概率(代表 "target"):
然而这个方法实际执行起来开销非常大,因为在每一步训练迭代中,我们需要去计算并正则化当前上下
文环境 h 中所有其他单词 w' 的概率得分。为了避免对概率模型中的所有单词进行计算,使用二分
类器(逻辑回归)在同一个上下文环境h中从k虚构的(噪声)单词\(w'\)中区分出真正的目标单词\(w_t\)
。
所以其损失函数为
其中\(Q_{\theta}(D=1|w_t,h)\)是数据集在上下文h,根据所学习的嵌套向量\(\theta\),目标单词\(w\)
使用逻辑回归计算得到的概率。当真实目标单词被分配到较高的概率,同时噪声单词分配到的概率很低时,
目标函数才会达到最大值。
Skip-gram模型
下面看实践。
- 数据集:
the quick brown fox jumped over the lazy dog
- 定义"目标单词前一个和后一个单词作为上下文"(窗口为1),得到数据集为:
([the, brown], quick), ([quick, fox], brown), ([brown, jumped], fox), ...
- Skip-gram模型中将目标单词和上下文颠倒,得到数据集:
(quick, the), (quick, brown), (brown, quick), (brown, fox), ...
- 本例中对每一个样本或
batch_size(16 <= batch_size <= 512)
很小的样本集(一句话或几句话)执行随机梯度下降(SGD)。
例如根据quick
预测the
时,随机选取了一个噪声单词为sheep
,则损失函数为
计算\(\frac{\partial J}{\partial \theta}\)并更新嵌套参数\(\theta\),将\(J\)最大化,直到把
真实单词和噪声单词很好地区分开。
完整代码:
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Basic word2vec example."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import math
import os
import random
import zipfile
import sys
import numpy as np
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
# Step 1: Download the data.
url = 'http://mattmahoney.net/dc/'
# 下载文件
def maybe_download(filename, expected_bytes):
"""Download a file if not present, and make sure it's the right size."""
if not os.path.exists(filename):
def _progress(count, block_size,total_size):
sys.stdout.write('\r>> Downloading %s %.1f%%' %(filename,float(count*block_size)/float(total_size)*100.0))
sys.stdout.flush()
filename, _ = urllib.request.urlretrieve(url + filename, filename,_progress)
print()
statinfo = os.stat(filename)
if statinfo.st_size == expected_bytes:
print('Found and verified', filename)
else:
print(statinfo.st_size)
raise Exception(
'Failed to verify ' + filename + '. Can you get to it with a browser?')
return filename
filename = maybe_download('text8.zip', 31344016)
# 解压并读取文件
def read_data(filename):
"""Extract the first file enclosed in a zip file as a list of words."""
with zipfile.ZipFile(filename) as f:
data = tf.compat.as_str(f.read(f.namelist()[0])).split()
return data
vocabulary = read_data(filename)
print('Data size', len(vocabulary))
# Step 2: Build the dictionary and replace rare words with UNK token.
vocabulary_size = 50000
# 建立数据集,words是所有单词的列表,n_words是想建的字典中单词的个数
def build_dataset(words, n_words):
"""Process raw inputs into a dataset."""
#将所有低频单词设为UNK,个数先设为-1
count = [['UNK', -1]]
#将words集合中的单词按频数排序,将频率最高的前n_words-1个单词以及他们的出现的个数按顺序输出到count中,将频数排在n_words-1之后的单词设为UNK。同时,count的规律为索引越小,单词出现的频率越高
count.extend(collections.Counter(words).most_common(n_words - 1))
#建一个字典dict
dictionary = dict()
for word, _ in count:
#对count中所有单词进行编号,赋予ID,由0开始,保存在字典dict中
dictionary[word] = len(dictionary)
#建一个列表
data = list()
unk_count = 0
#对原words列表中的单词使用字典中的ID进行编号,即将单词转换成整数,储存在data列表中,同时对UNK进行计数
for word in words:
if word in dictionary:
index = dictionary[word]
else:
index = 0 # dictionary['UNK']
unk_count += 1
data.append(index)
#记录UNK个数
count[0][1] = unk_count
#将dictionary中的数据反转,即可以通过ID找到对应的单词,保存在reversed_dictionary中
reversed_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
return data, count, dictionary, reversed_dictionary
data, count, dictionary, reverse_dictionary = build_dataset(vocabulary,
vocabulary_size)
del vocabulary # Hint to reduce memory.
#输出频数最高的前5个单词
print('Most common words (+UNK)', count[:5])
print('Sample data', data[:10], [reverse_dictionary[i] for i in data[:10]])
data_index = 0
# Step 3: Function to generate a training batch for the skip-gram model.
#这个函数的功能是对数据data中的每个单词,分别与前一个单词和后一个单词生成一个batch,即[data[1],data[0]]和[data[1],data[2]],其中当前单词data[1]存在batch中,前后单词存在labels中
def generate_batch(batch_size, num_skips, skip_window):
global data_index #全局索引,在data中的位置
assert batch_size % num_skips == 0
assert num_skips <= 2 * skip_window
batch = np.ndarray(shape=(batch_size), dtype=np.int32) #建一个batch大小的数组,保存任意单词
labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) #建一个(batch,1)大小的二位数组,保存任意单词前一个或者后一个单词,从而形成一个pair
span = 2 * skip_window + 1 # #窗的大小,为3,结构为[ skip_window target skip_window ]
buffer = collections.deque(maxlen=span) #建立一个结构为双向队列的缓冲区,大小不超过3
if data_index + span > len(data): #如果索引超过了数据长度,则重新从数据头部开始
data_index = 0
buffer.extend(data[data_index:data_index + span]) #将数据index到index+3段赋值给buffer,大小刚好为span
data_index += span #将index向后移3位 -----------------------------------------------------------------(1)
for i in range(batch_size // num_skips): #128//2 四舍五入
target = skip_window # 将target赋值为1,即当前单词
targets_to_avoid = [skip_window] #将target存入targets_to_avoid中,避免重复存入
for j in range(num_skips):
while target in targets_to_avoid: #选出还没出现在targets_to_avoid中的单词索引
target = random.randint(0, span - 1)
targets_to_avoid.append(target) #存入targets_to_avoid
batch[i * num_skips + j] = buffer[skip_window] #在batch中存入当前单词
labels[i * num_skips + j, 0] = buffer[target] #在labels中存入当前单词前一个单词或者后一个单词
if data_index == len(data): # 如果到达数据尾部
buffer[:] = data[:span] #重新开始,将数据前三位存入buffer中,也就是说,是从数据第二个单词开始的
data_index = span
else:
buffer.append(data[data_index]) #如果没有越界,则在buffer尾部插入一个新单词,同时挤出buffer中第一个单词,相当于是span的范围向后移了一位
data_index += 1 #当前单词的索引向后移一位
# Backtrack a little bit to avoid skipping words in the end of a batch
data_index = (data_index + len(data) - span) % len(data) #避免循环结束后刚好停在data尾部,以防下次运行该函数向后移动三位index时越界
return batch, labels
batch, labels = generate_batch(batch_size=8, num_skips=2, skip_window=1)
for i in range(8):
print(batch[i], reverse_dictionary[batch[i]],
'->', labels[i, 0], reverse_dictionary[labels[i, 0]])
# Step 4: Build and train a skip-gram model.
batch_size = 128
embedding_size = 128 # Dimension of the embedding vector.
skip_window = 1 # How many words to consider left and right.
num_skips = 2 # How many times to reuse an input to generate a label.
# We pick a random validation set to sample nearest neighbors. Here we limit the
# validation samples to the words that have a low numeric ID, which by
# construction are also the most frequent.
valid_size = 16 # Random set of words to evaluate similarity on.
valid_window = 100 # Only pick dev samples in the head of the distribution.
valid_examples = np.random.choice(valid_window, valid_size, replace=False)
num_sampled = 64 # Number of negative examples to sample.
graph = tf.Graph()
with graph.as_default():
# Input data.
# 输入一个batch的训练数据,是当前单词在字典中的索引id
train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
# 输入一个batch的训练数据的标签,是当前单词前一个或者后一个单词在字典中的索引id
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
#从字典前100个单词,即频率最高的前100个单词中,随机选出16个单词,将它们的id储存起来,作为验证集
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)
# Ops and variables pinned to the CPU because of missing GPU implementation
with tf.device('/cpu:0'):
# Look up embeddings for inputs.
# 初始化字典中每个单词的embeddings,值为-1到1的均匀分布
embeddings = tf.Variable(
tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
#找到训练数据对应的embeddings
embed = tf.nn.embedding_lookup(embeddings, train_inputs)
# Construct the variables for the NCE loss
#初始化训练参数
nce_weights = tf.Variable(
tf.truncated_normal([vocabulary_size, embedding_size],
stddev=1.0 / math.sqrt(embedding_size))
#初始化偏置
nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
# Compute the average NCE loss for the batch.
# tf.nce_loss automatically draws a new sample of the negative labels each
# time we evaluate the loss.
'''
算法非常简单,根据词频或者类似词频的概率选出64个负采样v,联同正确的输入w(都是词的id),用它们在nce_weights
对应的向量组成一个训练子集mu。
对于训练子集中各个元素mu(i),如果是w或者m(i)==w(w这里是输入对应的embedding),loss(i)=log(sigmoid(w*mu(i)))
如果是负采样,则loss(i)=log(1-sigmoid(w*mu(i)))
然后将所有loss加起来作为总的loss,loss越小越相似(余弦定理)
用总的loss对各个参数求导数,来更新nce_weight以及输入的embedding
'''
loss = tf.reduce_mean(
tf.nn.nce_loss(weights=nce_weights,
biases=nce_biases,
labels=train_labels,
inputs=embed,
num_sampled=num_sampled,
num_classes=vocabulary_size))
# Construct the SGD optimizer using a learning rate of 1.0.
optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)
# Compute the cosine similarity between minibatch examples and all embeddings.
#对embedding进行归一化
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
normalized_embeddings = embeddings / norm
#找到验证集中的id对应的embedding
valid_embeddings = tf.nn.embedding_lookup(
normalized_embeddings, valid_dataset)
#判断验证集和整个归一化的embedding的相似性
similarity = tf.matmul(
valid_embeddings, normalized_embeddings, transpose_b=True)
# Add variable initializer.
init = tf.global_variables_initializer()
# Step 5: Begin training.
num_steps = 100001
with tf.Session(graph=graph) as session:
# We must initialize all variables before we use them.
init.run()
print('Initialized')
average_loss = 0
for step in xrange(num_steps):
#生成一个batch的训练数据
batch_inputs, batch_labels = generate_batch(
batch_size, num_skips, skip_window)
feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels}
# We perform one update step by evaluating the optimizer op (including it
# in the list of returned values for session.run()
_, loss_val = session.run([optimizer, loss], feed_dict=feed_dict)
average_loss += loss_val
#求移动平均loss
if step % 2000 == 0:
if step > 0:
average_loss /= 2000
# The average loss is an estimate of the loss over the last 2000 batches.
print('Average loss at step ', step, ': ', average_loss)
average_loss = 0
# Note that this is expensive (~20% slowdown if computed every 500 steps)
if step % 10000 == 0:
#每10000步评估一下验证集和整个embeddings的相似性
#结果是验证集中每个词和字典中所有词的相似性
sim = similarity.eval()
#对于验证集里面的每一个词
for i in xrange(valid_size):
#根据id找回词
valid_word = reverse_dictionary[valid_examples[i]]
#因为两个向量相乘,值越小越相似(余弦定理),这里找出前8个最相似的词
top_k = 8 # number of nearest neighbors
#排序后输出值最小的前8个的id
nearest = (-sim[i, :]).argsort()[1:top_k + 1]
log_str = 'Nearest to %s:' % valid_word
for k in xrange(top_k):
#根据id找到对应的word
close_word = reverse_dictionary[nearest[k]]
log_str = '%s %s,' % (log_str, close_word)
print(log_str)
final_embeddings = normalized_embeddings.eval()
# Step 6: Visualize the embeddings.
def plot_with_labels(low_dim_embs, labels, filename='tsne.png'):
assert low_dim_embs.shape[0] >= len(labels), 'More labels than embeddings'
plt.figure(figsize=(18, 18)) # in inches
for i, label in enumerate(labels):
x, y = low_dim_embs[i, :]
plt.scatter(x, y)
plt.annotate(label,
xy=(x, y),
xytext=(5, 2),
textcoords='offset points',
ha='right',
va='bottom')
plt.savefig(filename)
try:
# pylint: disable=g-import-not-at-top
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000, method='exact')
plot_only = 500
low_dim_embs = tsne.fit_transform(final_embeddings[:plot_only, :])
labels = [reverse_dictionary[i] for i in xrange(plot_only)]
plot_with_labels(low_dim_embs, labels)
except ImportError:
print('Please install sklearn, matplotlib, and scipy to show embeddings.')
当前最新版本的tutorial已经更新了版本(我还没跑,你可以试试)。