代码随想录算法训练营第十七天|LeetCode 110. 平衡二叉树、LeetCode 257. 二叉树的所有路径 、LeetCode 404.左叶子之和。

110. 平衡二叉树

文章:代码随想录 (programmercarl.com)

视频:后序遍历求高度,高度判断是否平衡 | LeetCode:110.平衡二叉树_哔哩哔哩_bilibili

class Solution {
public:
    int getDepth(TreeNode* node)
    {
        if (node == NULL)
        {
            return 0;
        }
        int leftDepth = getDepth(node->left);
        if (leftDepth == -1)
        {
            return -1;
        }
        int rightDepth = getDepth(node->right);
        if (rightDepth == -1)
        {
            return -1;
        }
        if (abs(leftDepth - rightDepth) > 1)
        {
            return -1;
        }
        else {
            return 1 + max(leftDepth, rightDepth);
        }
    }
    bool isBalanced(TreeNode* root) {
        return getDepth(root) == -1 ? false : true;
    }
};

257. 二叉树的所有路径

文章:代码随想录 (programmercarl.com)

视频:递归中带着回溯,你感受到了没?| LeetCode:257. 二叉树的所有路径_哔哩哔哩_bilibili

思路:

这道题目要求从根节点到叶子的路径,所以需要前序遍历,这样才方便让父节点指向孩子节点,找到对应的路径。

在这道题目中将第一次涉及到回溯,因为我们要把路径记录下来,需要回溯来回退一个路径再进入另一个路径。

前序遍历以及回溯的过程如图:

257.二叉树的所有路径

我们先使用递归的方式,来做前序遍历。要知道递归和回溯就是一家的,本题也需要回溯。

  1. 递归函数函数参数以及返回值

要传入根节点,记录每一条路径的path,和存放结果集的result,这里递归不需要返回值,代码如下:

void traversal(TreeNode* cur, vector<int>& path, vector<string>& result)
  1. 确定递归终止条件

在写递归的时候都习惯了这么写:

if (cur == NULL) {
    终止处理逻辑
}

但是本题的终止条件这样写会很麻烦,因为本题要找到叶子节点,就开始结束的处理逻辑了(把路径放进result里)。

那么什么时候算是找到了叶子节点? 是当 cur不为空,其左右孩子都为空的时候,就找到叶子节点。

所以本题的终止条件是:

if (cur->left == NULL && cur->right == NULL) {
    终止处理逻辑
}

为什么没有判断cur是否为空呢,因为下面的逻辑可以控制空节点不入循环。

再来看一下终止处理的逻辑。

这里使用vector 结构path来记录路径,所以要把vector 结构的path转为string格式,再把这个string 放进 result里。

那么为什么使用了vector 结构来记录路径呢? 因为在下面处理单层递归逻辑的时候,要做回溯,使用vector方便来做回溯。

可能有的同学问了,我看有些人的代码也没有回溯啊。

其实是有回溯的,只不过隐藏在函数调用时的参数赋值里,下文我还会提到。

这里我们先使用vector结构的path容器来记录路径,那么终止处理逻辑如下:

if (cur->left == NULL && cur->right == NULL) { // 遇到叶子节点
    string sPath;
    for (int i = 0; i < path.size() - 1; i++) { // 将path里记录的路径转为string格式
        sPath += to_string(path[i]);
        sPath += "->";
    }
    sPath += to_string(path[path.size() - 1]); // 记录最后一个节点(叶子节点)
    result.push_back(sPath); // 收集一个路径
    return;
}
  1. 确定单层递归逻辑

因为是前序遍历,需要先处理中间节点,中间节点就是我们要记录路径上的节点,先放进path中。

path.push_back(cur->val);

然后是递归和回溯的过程,上面说过没有判断cur是否为空,那么在这里递归的时候,如果为空就不进行下一层递归了。

所以递归前要加上判断语句,下面要递归的节点是否为空,如下

if (cur->left) {
    traversal(cur->left, path, result);
}
if (cur->right) {
    traversal(cur->right, path, result);
}

此时还没完,递归完,要做回溯啊,因为path 不能一直加入节点,它还要删节点,然后才能加入新的节点。

那么回溯要怎么回溯呢,一些同学会这么写,如下:

if (cur->left) {
    traversal(cur->left, path, result);
}
if (cur->right) {
    traversal(cur->right, path, result);
}
path.pop_back();

这个回溯就有很大的问题,我们知道,回溯和递归是一一对应的,有一个递归,就要有一个回溯,这么写的话相当于把递归和回溯拆开了, 一个在花括号里,一个在花括号外。

所以回溯要和递归永远在一起,世界上最遥远的距离是你在花括号里,而我在花括号外!

那么代码应该这么写:

if (cur->left) {
    traversal(cur->left, path, result);
    path.pop_back(); // 回溯
}
if (cur->right) {
    traversal(cur->right, path, result);
    path.pop_back(); // 回溯
}

题解:

class Solution {
public:
    void traversal(TreeNode* node, vector<int>& path, vector<string>& result)
    {
        //中
        path.push_back(node->val);
        if (node->left == NULL && node->right == NULL)
        {
            string sPath;
            for (int i = 0; i < path.size() - 1; i++)
            {
                sPath += to_string(path[i]);
                sPath += "->";
            }
            sPath += to_string(path[path.size() - 1]);
            result.push_back(sPath);
            return;
        }
        //左
        if (node->left != NULL)
        {
            traversal(node->left, path, result);
            path.pop_back(); //回溯
        }
        //右
        if (node->right != NULL)
        {
            traversal(node->right, path, result);
            path.pop_back(); //回溯
        }
    }
    vector<string> binaryTreePaths(TreeNode* root) {
        vector<string> result;  //path转换成string格式变成result
        vector<int> path; //path记录路径
        if (root == NULL)
        {
            return result;
        }
        traversal(root, path, result);
        return result;
    }
};

404. 左叶子之和

文章:代码随想录 (programmercarl.com)

视频:二叉树的题目中,总有一些规则让你找不到北 | LeetCode:404.左叶子之和_哔哩哔哩_bilibili

思路:

首先要注意是判断左叶子,不是二叉树左侧节点,所以不要上来想着层序遍历。

因为题目中其实没有说清楚左叶子究竟是什么节点,那么我来给出左叶子的明确定义:节点A的左孩子不为空,且左孩子的左右孩子都为空(说明是叶子节点),那么A节点的左孩子为左叶子节点

大家思考一下如下图中二叉树,左叶子之和究竟是多少?

404.左叶子之和

其实是0,因为这棵树根本没有左叶子!

但看这个图的左叶子之和是多少?

图二

相信通过这两个图,大家对最左叶子的定义有明确理解了。

那么判断当前节点是不是左叶子是无法判断的,必须要通过节点的父节点来判断其左孩子是不是左叶子。

如果该节点的左节点不为空,该节点的左节点的左节点为空,该节点的左节点的右节点为空,则找到了一个左叶子,判断代码如下:

if (node->left != NULL && node->left->left == NULL && node->left->right == NULL) {
    左叶子节点处理逻辑
}

递归法

递归的遍历顺序为后序遍历(左右中),是因为要通过递归函数的返回值来累加求取左叶子数值之和。

递归三部曲:

  1. 确定递归函数的参数和返回值

判断一个树的左叶子节点之和,那么一定要传入树的根节点,递归函数的返回值为数值之和,所以为int

使用题目中给出的函数就可以了。

  1. 确定终止条件

如果遍历到空节点,那么左叶子值一定是0

if (root == NULL) return 0;

注意,只有当前遍历的节点是父节点,才能判断其子节点是不是左叶子。 所以如果当前遍历的节点是叶子节点,那其左叶子也必定是0,那么终止条件为:

if (root == NULL) return 0;
if (root->left == NULL && root->right== NULL) return 0; //其实这个也可以不写,如果不写不影响结果,但就会让递归多进行了一层。
  1. 确定单层递归的逻辑

当遇到左叶子节点的时候,记录数值,然后通过递归求取左子树左叶子之和,和 右子树左叶子之和,相加便是整个树的左叶子之和。

代码如下:

int leftValue = sumOfLeftLeaves(root->left);    // 左
if (root->left && !root->left->left && !root->left->right) {
    leftValue = root->left->val;
}
int rightValue = sumOfLeftLeaves(root->right);  // 右

int sum = leftValue + rightValue;               // 中
return sum;

题解:

class Solution {
public:
    int sumOfLeftLeaves(TreeNode* node) {
        if (node == NULL) //当前结点为空,返回0
        {
            return 0;
        }
        if (node->left == NULL && node->right == NULL) 
        {
            return 0;
        }
        int leftValue = sumOfLeftLeaves(node->left); //左
        if (node->left != NULL && node->left->left == NULL && node->left->right == NULL) //左结点不为空,但左右子结点都为空,说明此时是左叶子结点,然后加上该左结点的值
        {
            leftValue += node->left->val;
        }
        int rightValue = sumOfLeftLeaves(node->right); //右
        int sum = leftValue + rightValue; //中 结果 = 左子树的左叶子和 + 右子树的左叶子和
        return sum;
    }
};
posted @   NemoMakesProgress  阅读(4)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构
点击右上角即可分享
微信分享提示