映射&集合
哈希函数
通过哈希表可以实现 O(1) 复杂度的查找。
哈希函数构造方法:设计好的哈希函数的两个基本原则,计算简单+分布均匀
1. 直接定址法
用key自身的某个线性函数来定址,f(key) = a*key + b。但需要知道关键字的分布情况。
2. 数字分析法
适合处理关键字位数比较大的情况。抽取关键字的一部分作为哈希地址。
3. 平方取中法
将key平方后取中间若干位数字作为哈希地址。
4. 折叠法
将key分为位数相等的几个部分,将这几部分叠加求和,按哈希表表长取后几位作为哈希地址。
5. 除留余数法
最常用。对哈希表长为m,f(key) = key mod p ,p小于等于m。p的选择非常重要,选的不好可能造成哈希冲突。
处理哈希冲突的方法:key1 != key2 但 f(key1) == f(key2),哈希冲突。
1. 开放定址法:一旦发生冲突,就去找下一个空的哈希地址,只要哈希表足够大,总能找到空的哈希地址。
fi(key) = (f(key)+di) mod p,di = 1, 2, ..., p-1 线性探测法。
直接这样取值di比较盲目,可以通过修改di的取值方式,例如平方运算,来尽量解决堆积问题,二次探测法。
fi(key) = (f(key)+di) mod p,di = 12, -12, 22, -22 , ..., q2, -q2 ;q<=p/2
或者直接用随机函数来取值di,称之为随机探测法。
fi(key) = (f(key)+di) mod p,di是由随机函数产生的序列。
2. 再哈希函数法,准备多个哈希函数,当出现冲突的时候,调用下一个哈希函数进行计算。最后还是出现冲突的可能很低。
3. 链地址法(拉链法),常用方法。利用单链表,哈希表存的不是记录元素,而是记录的地址,如果出现冲突,就从前面的记录再链到冲突的元素即可。
4. 公共溢出区法,对于冲突的记录单独用溢出表连续存储,如果哈希搜索不到,就去溢出区中找。对于一个比较优秀的哈希函数,这种方法解决冲突的效率较高。
List:实现方式可以是数组也可以是链表,元素可重复。插入O(1),查找O(n)。
Map:key-value对构成,键key不重复。
Set:不允许有重复元素。用哈希表(或二叉树)来实现,所以查找O(1) 复杂度(或O(logn))。
用哈希表实现,元素排列乱序,查找O(1);用二叉搜索树实现,元素排列相对有序,查找O(logn)。
各语言中的 hashmap :
各语言中的 hashset: