k8s中gpu的调度
k8s集群使用GPU问题
一,首先需要安装 nvidia-container-runtime
yum install nvidia-container-runtime
1,然后修改 /etc/docker/daemon.json 文件,添加以下内容
"default-runtime": "nvidia", "runtimes": { "nvidia": { "path": "/usr/bin/nvidia-container-runtime", "runtimeArgs": [] } }
2,然后重新载入daemon并重启docker
systemctl daemon-reload systemctl restart docker
二,安装 k8s插件 nvidia-device-plugin
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. apiVersion: apps/v1 kind: DaemonSet metadata: name: nvidia-device-plugin-daemonset namespace: kube-system spec: selector: matchLabels: name: nvidia-device-plugin-ds updateStrategy: type: RollingUpdate template: metadata: # This annotation is deprecated. Kept here for backward compatibility # See https://kubernetes.io/docs/tasks/administer-cluster/guaranteed-scheduling-critical-addon-pods/ annotations: scheduler.alpha.kubernetes.io/critical-pod: "" labels: name: nvidia-device-plugin-ds spec: tolerations: # This toleration is deprecated. Kept here for backward compatibility # See https://kubernetes.io/docs/tasks/administer-cluster/guaranteed-scheduling-critical-addon-pods/ - key: CriticalAddonsOnly operator: Exists - key: nvidia.com/gpu operator: Exists effect: NoSchedule # Mark this pod as a critical add-on; when enabled, the critical add-on # scheduler reserves resources for critical add-on pods so that they can # be rescheduled after a failure. # See https://kubernetes.io/docs/tasks/administer-cluster/guaranteed-scheduling-critical-addon-pods/ priorityClassName: "system-node-critical" containers: - image: nvidia/k8s-device-plugin:1.11 name: nvidia-device-plugin-ctr securityContext: allowPrivilegeEscalation: false capabilities: drop: ["ALL"] volumeMounts: - name: device-plugin mountPath: /var/lib/kubelet/device-plugins volumes: - name: device-plugin hostPath: path: /var/lib/kubelet/device-plugins
最后执行:
kubectl create -f nvidia-device-plugin.yml
因为本集群是4台 node,所以如下图:
这样,gpu的调度就合理了
全世界的程序员们联合起来吧!