一些公式

$\log{X} < X$(对所有的X > 0成立,其中log表示以2为底的对数)

$\sum\limits_{i=1}^{N}i = \frac{N(N + 1)}{2} \cong \frac{N^2}{2}$

$\sum\limits_{i=1}^{N}i^2 = \frac{N(N + 1)(2N + 1)}{6} \cong \frac{N^3}{3}$

$\sum\limits_{i=1}^{N}i^k \cong \frac{N^{k+1}}{\left|{k + 1}\right|}$   $k \neq -1$

当k = -1时,上面的式子不成立,这时,上面的式子成为了一个新的级数,调和级数:

$H_N = \sum\limits_{i=1}^{N}\frac{1}{i} \cong \log_eN$

其中调和级数额和与$log_eN$之差就是欧拉常数,大致约等于0.57721566。

posted @ 2020-06-27 17:44  chaoguo1234  阅读(94)  评论(0编辑  收藏  举报