数据清洗第二次

词频统计

1.对词汇换行情况进行处理

由于在英文论文中常常出现一个单词换行的情况,导致有些词汇分裂,因此,在处理文本之前,对这种情况进行处理。处理的思路是:逐行读取纯文本文件,然后横向合并。借助正则表达式对词汇换行的情况进行处理。

def open_file(file_path):
    with open(file_path, encoding='utf-8') as f:
        # txt= f.read()
        txt0 = f.readlines()
        txt =[x.strip() for x in txt0]
        txt1 = " ".join(txt)
        txt2 = re.sub('(-\s)', '', txt1)
        return txt2


2.借助正则表达式,对缩写词汇进行替换

def replace_abbreviations(text):
    new_text = text
    new_text = pat_letter.sub(' ', text).strip().lower()
    new_text = pat_is.sub(r"\1 is", new_text)
    new_text = pat_s.sub("", new_text)
    new_text = pat_s2.sub("", new_text)
    new_text = pat_not.sub(" not", new_text)
    new_text = pat_would.sub(" would", new_text)
    new_text = pat_will.sub(" will", new_text)
    new_text = pat_am.sub(" am", new_text)
    new_text = pat_are.sub(" are", new_text)
    new_text = pat_ve.sub(" have", new_text)
    new_text = new_text.replace('\'', ' ')
    return new_text
3.对标点符号,以及文章中出现的大量的数字以及单个英文字符进行处理

def text_washing(text):
    new_text = re.sub('[,\.()":;!?@#$%^&*\d]|\'s|\'', '', text)  # txet wash
    new_text = re.sub("\W|[0-9]", " ", new_text)
    #deleting the solo character
    # 删掉单个字母
    txt4 = new_text.split(" ")
    list = []
    for i in txt4:
        i = i.strip()
        if len(i) > 2:
            list.append(i)
    wash_text = " ".join(list)
    return wash_text

4.对单词的词性进行还原,并借助停用词词典,对停用词进行剔除

def merge(text):
    words = text.split()
    new_words = []
    for word in words:
        if word:
            tag = nltk.pos_tag(word_tokenize(word)) # tag is like [('bigger', 'JJR')]
            pos = get_wordnet_pos(tag[0][1])
            if pos:
                lemmatized_word = lmtzr.lemmatize(word, pos)
                new_words.append(lemmatized_word)
            else:
                new_words.append(word)
    stopwords = [word.strip().lower() for word in open("stopwords.txt")]
    clean_tokens = [tok for tok in new_words if len(tok) > 1 and (tok not in stopwords)]
    return clean_tokens


def get_wordnet_pos(treebank_tag):
    if treebank_tag.startswith('J'):
        return nltk.corpus.wordnet.ADJ
    elif treebank_tag.startswith('V'):
        return nltk.corpus.wordnet.VERB
    elif treebank_tag.startswith('N'):
        return nltk.corpus.wordnet.NOUN
    elif treebank_tag.startswith('R'):
        return nltk.corpus.wordnet.ADV
    else:
        return ''

5.构建词频的统计函数

def append_ext(words_list):
    count = collections.Counter(words_list)
    words =count.most_common()
    new_words = []
    for item in words:
        word, count = item
        tag = nltk.pos_tag(word_tokenize(word))[0][1] # tag is like [('bigger', 'JJR')]
        new_words.append((word, count, tag))
    return new_words

6.将数据写入文件

def data_write(file_path, datas):
    f = xlwt.Workbook()
    sheet1 = f.add_sheet(u'sheet1', cell_overwrite_ok=True)  # 创建sheet
    # 将数据写入第 i 行,第 j 列
    j = 2
    for data in datas:
        for i in range(len(data)):
            sheet1.write(i, j, data[j])
        i = i + 1
    f.save(file_path)  # 保存文件
原文链接:

https://blog.csdn.net/weixin_38224930/article/details/106010575

致谢

posted @ 2021-05-22 21:50  帅超007  阅读(58)  评论(0编辑  收藏  举报