动态规划——树形dp以没有上司的舞会为例

树形dp

树形DP准确的说是一种DP的思想,将DP建立在树状结构的基础上。整体的思路大致就是用树形的结构存储数据。
通过对于每个节点状态选与不选来求最值
自顶而下dfs,属于树的后序遍历

例题

Ural 大学有 N 名职员,编号为 1∼N。

他们的关系就像一棵以校长为根的树,父节点就是子节点的直接上司。

每个职员有一个快乐指数,用整数 Hi 给出,其中 1≤i≤N。

现在要召开一场周年庆宴会,不过,没有职员愿意和直接上司一起参会。

在满足这个条件的前提下,主办方希望邀请一部分职员参会,使得所有参会职员的快乐指数总和最大,求这个最大值。

输入格式
第一行一个整数 N。

接下来 N 行,第 i 行表示 i 号职员的快乐指数 Hi。

接下来 N−1 行,每行输入一对整数 L,K,表示 K 是 L 的直接上司。

输出格式
输出最大的快乐指数。

数据范围
1≤N≤6000,
−128≤Hi≤127
输入样例:
7
1
1
1
1
1
1
1
1 3
2 3
6 4
7 4
4 5
3 5
输出样例:
5

Syntax error in textmermaid version 10.9.0
import sys
N = 6010

sys.setrecursionlimit(N)
h = [-1] * N
e = [-1] * N
ne = [-1] * N
idx = 0
happy = [0] * N
has_fa = [False] * N
f = [[0, 0] for _ in range(N)]

def add(a, b) :
	global idx
	e[idx] = b
	ne[idx] = h[a]
	h[a] = idx
	idx += 1

def dfs(u) :
	f[u][1] = happy[u]

	i = h[u]
	while i != -1 :
		j = e[i]
		dfs(j)
		f[u][0] += max(f[j][0], f[j][1])
		f[u][1] += f[j][0]
		i = ne[i]

n = int(input())

for i in range(1, n + 1) :
	happy[i] = int(input())

for i in range(n - 1) :
	a, b = map(int, input().split())
	add(b, a)
	has_fa[a] = True
root = 1
while has_fa[root] :
	root += 1
dfs(root)

print(max(f[root][0], f[root][1]))

总结

树形dp就是在一棵树上通过后序遍历的方式做状态转移

posted @   chanxe  阅读(24)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 微软正式发布.NET 10 Preview 1:开启下一代开发框架新篇章
· 没有源码,如何修改代码逻辑?
· NetPad:一个.NET开源、跨平台的C#编辑器
· PowerShell开发游戏 · 打蜜蜂
· 凌晨三点救火实录:Java内存泄漏的七个神坑,你至少踩过三个!
点击右上角即可分享
微信分享提示