洛谷P2114-起床困难综合症
题目
21 世纪,许多人得了一种奇怪的病:起床困难综合症,其临床表现为:起床难,起床后精神不佳。作为一名青春阳光好少年,atm 一直坚持与起床困难综合症作斗争。通过研究相关文献,他找到了该病的发病原因:在深邃的太平洋海底中,出现了一条名为 drd 的巨龙,它掌握着睡眠之精髓,能随意延长大家的睡眠时间。正是由于 drd 的活动,起床困难综合症愈演愈烈,以惊人的速度在世界上传播。为了彻底消灭这种病,atm 决定前往海底,消灭这条恶龙。历经千辛万苦,atm 终于来到了 drd 所在的地方,准备与其展开艰苦卓绝的战斗。drd 有着十分特殊的技能,他的防御战线能够使用一定的运算来改变他受到的伤害。具体说来,drd 的防御战线由 n 扇防御门组成。每扇防御门包括一个运算 op 和一个参数 t,其中运算一定是 \(OR\),\(XOR\),\(AND\)中的一种,参数则一定为非负整数。如果还未通过防御门时攻击力为 x,则其通过这扇防御门后攻击力将变为 \(x\space op\space t\)。最终 drd 受到的伤害为对方初始攻击力 x 依次经过所有 n 扇防御门后转变得到的攻击力。
由于 atm 水平有限,他的初始攻击力只能为 0 到 m 之间的一个整数(即他的初始攻击力只能在 \(0,1,...,m\) 中任选,但在通过防御门之后的攻击力不受 m 的限制)。为了节省体力,他希望通过选择合适的初始攻击力使得他的攻击能让 drd 受到最大的伤害,请你帮他计算一下,他的一次攻击最多能使 drd 受到多少伤害。
思路
最一开始设定两个数字\(0xFFFFFFFF\)(这个数字大于\(1e9\)并且二进制下全部为\(1\)即可)和\(0\),对于这两个数字分别进行一次题目中描述的操作,这样就得到了真值表。
按照贪心的思想从最高位开始看:
如果当前位\(n\)可以把\(0\)变成\(1\),那肯定是最好的,不占用\(m\)还能提高攻击力;否则如果把\(0\)变成\(0\)那么不必理他即可。
如果当前位\(n\)可以把\(1\)变成\(0\),那这一位设置为\(0\)就行了,因为变成\(1\)不仅占用\(m\)还减小攻击力;但如果\(1\)变成\(1\),那么当\(1<<i\)不超过当前剩余\(m\)的前提下可以选择。
代码
#include <iostream>
#include <cstring>
#include <string>
typedef long long LL;
std::string s;
void solve() {
LL n, m, t;
std::cin >> n >> m;
LL zeros = 0, ones = 1LL * 0xffffffff;
for (int i = 0; i < n; i++) {
std::cin >> s >> t;
if (s == "AND") {
zeros &= t;
ones &= t;
} else if (s == "OR") {
zeros |= t;
ones |= t;
} else {
zeros ^= t;
ones ^= t;
}
}
LL ans = 0;
for (int i = 30; i >= 0; i--) {
t = 1LL << i;
if (zeros & t) {
ans += t;
} else if (m >= t && (ones & t)) {
ans += t;
m -= t;
}
}
std::cout << ans << std::endl;
}
int main() {
solve();
return 0;
}