HDU4871 Shortest-path tree(树分治)
好久没做过树分治的题了,对上一次做是在南京赛里跪了一道很裸的树分治题后学的一道,多校的时候没有看这道题,哪怕看了感觉也看不出来是树分治,看出题人给了解题报告里写了树分治就做一下好了。
题意其实就是给你一个图,然后让你转换成一棵树,这棵树满足的是根节点1到其余各点的距离都是图里的最短距离,而且为了保证这棵树的唯一性,路径也必须是最小的。转化成树的方法其实就是跑一次spfa。spfa的时候记下所有到这个的前驱的边,然后这些边集反向的边补上就是构成所有最短路的边。然后在这些边上跑一次dfs,跑前将边按照到达点的序号由小到大排序,注意dfs搜的下一个点的距离必须是最短的才搜,不然的话搜出来的图就是不对的,比划一下题目给的样例就知道了。
至此图的部分转化完了,剩下的就是求一个图里包含了k个点的路径的最长距离,以及有多少条,相似的问题还有有多少条路径的乘积=k,有多少条路径的和>k,有多少条路径的乘积是完全立方数。。。做法就是典型的树分治。
树分治在《挑战程序设计竞赛》这本书上有一个很好的框架可以直接抄,我就直接拿来用了。具体的做法是找出重心,对重心外的部分递归求解,合并的时候枚举到重心的所有路径,枚举的时候可以用一个全局的map ds记录当前到达这个点的所有情况,然后用一个tds去枚举新的部分的路径,然后通过ds和tds更新答案,更新完后将tds的内容加进去ds。下面贴一记代码好了
#pragma warning(disable:4996) #include <iostream> #include <cstring> #include <string> #include <vector> #include <cstdio> #include <algorithm> #include <cmath> #include <queue> #include <map> using namespace std; #define ll long long #define maxn 31000 #define maxm 61000 #define MP make_pair struct Edge{ int v, w; Edge(int vi, int wi) :v(vi), w(wi){} Edge(){} bool operator < (const Edge & b) const{ return v < b.v; } }; vector<Edge> G[maxn]; vector<Edge> E[maxn]; vector<Edge> EE[maxn]; vector<Edge> T[maxn]; int n, m, k; int d[maxn]; int dx[maxn]; bool in[maxn]; void dfs(int u,int dis) { in[u] = true; dx[u] = dis; if (dx[u] != d[u]) puts("fuck"); for (int i = 0; i < EE[u].size(); i++){ int v = EE[u][i].v, w = EE[u][i].w; if (!in[v]&&w+dis==d[v]) { T[u].push_back(Edge(v, w)); T[v].push_back(Edge(u, w)); dfs(v, w + dis); } } } void spfa() { queue<int> que; memset(in, 0, sizeof(in)); memset(d, 0x3f, sizeof(d)); d[1] = 0; in[1] = true; que.push(1); while (!que.empty()){ int u = que.front(); que.pop(); in[u] = false; for (int i = 0; i < G[u].size(); i++){ int v = G[u][i].v, w = G[u][i].w; if (d[u] + w < d[v]){ d[v] = d[u] + w; if (!in[v]) { in[v] = true; que.push(v); } E[v].clear(); E[v].push_back(Edge(u, w)); } else if (d[u] + w == d[v]){ E[v].push_back(Edge(u, w)); } } } for (int i = 1; i <= n; i++){ for (int j = 0; j < E[i].size(); j++){ EE[E[i][j].v].push_back(Edge(i, E[i][j].w)); EE[i].push_back(E[i][j]); } } for (int i = 1; i <= n; i++) sort(EE[i].begin(), EE[i].end()); memset(in, 0, sizeof(in)); memset(dx, 0x3f, sizeof(dx)); dfs(1,0); } bool centroid[maxn]; int ssize[maxn]; int compute_subtree_size(int v, int p){ int c = 1; for (int i = 0; i < T[v].size(); i++){ int w = T[v][i].v; if (w == p || centroid[w]) continue; c += compute_subtree_size(w, v); } ssize[v] = c; return c; } pair<int, int> search_centroid(int v, int p, int t){ pair<int, int> res = MP(INT_MAX, -1); int s = 1, m = 0; for (int i = 0; i < T[v].size(); i++){ int w = T[v][i].v; if (w == p || centroid[w]) continue; res = min(res, search_centroid(w, v, t)); m = max(m, ssize[w]); s += ssize[w]; } m = max(m, t - s); res = min(res, MP(m, v)); return res; } map<int, pair<int, int> > ds; map<int, pair<int, int> > tds; map<int, pair<int, int> >::iterator it; map<int, pair<int, int> >::iterator itt; // pass kk points, distant is dis void enumerate(int v, int p, int kk, int dis, map<int, pair<int, int> > &tds) { if (kk > k) return; it = tds.find(kk); if (it!=tds.end()){ if (it->second.first == dis) { it->second.second += 1; } else if(it->second.first<dis){ tds.erase(it); tds.insert(MP(kk, MP(dis, 1))); } } else{ tds.insert(MP(kk, MP(dis, 1))); } for (int i = 0; i < T[v].size(); i++){ int w = T[v][i].v; if (w == p || centroid[w]) continue; enumerate(w, v, kk + 1, dis + T[v][i].w, tds); } } ll ans, num; void solve(int v) { compute_subtree_size(v, -1); int s = search_centroid(v, -1, ssize[v]).second; centroid[s] = true; for (int i = 0; i < T[s].size(); i++){ if (centroid[T[s][i].v]) continue; solve(T[s][i].v); } ds.clear(); ds.insert(MP(1, MP(0, 1))); for (int i = 0; i < T[s].size(); i++){ if (centroid[T[s][i].v]) continue; tds.clear(); enumerate(T[s][i].v, s, 1, T[s][i].w, tds); it = tds.begin(); while (it != tds.end()){ int kk = it->first; if (ds.count(k - kk)){ itt = ds.find(k - kk); int ldis = it->second.first + itt->second.first; if (ldis>ans) { ans = ldis; num = it->second.second*itt->second.second; } else if (ldis == ans){ num += it->second.second*itt->second.second; } } ++it; } it = tds.begin(); while (it != tds.end()){ int kk = it->first + 1; if (ds.count(kk)){ itt = ds.find(kk); if (it->second.first > itt->second.first){ ds.erase(itt); ds.insert(MP(kk, it->second)); } else if (it->second.first == itt->second.first) itt->second.second += it->second.second; } else{ ds.insert(MP(kk, it->second)); } ++it; } } centroid[s] = false; } int main() { int TE; cin >> TE; while (TE--){ scanf("%d%d%d", &n, &m, &k); for (int i = 0; i <= n; i++) { G[i].clear(); E[i].clear(); EE[i].clear(); T[i].clear(); } int ui, vi, wi; for (int i = 0; i < m; i++){ scanf("%d%d%d", &ui, &vi, &wi); G[ui].push_back(Edge(vi, wi)); G[vi].push_back(Edge(ui, wi)); } spfa(); ans = 0, num = 0; solve(1); cout << ans << " " << num << endl; } return 0; }