ZOJ2928 Mathematical contest in modeling(模拟退火)

连续两天学了一些numerical analysis的方法,昨天是学了一下三分,今天学了一下模拟退火。很早就听说了模拟退火在求费马点上的运用了,只知道一些大概,但是没有深入研究,碰到题目就卡壳了,现在算是补一下这种方法的思路。

模拟退火就是随机一些起点,然后定一个步长,每次在k个方向上去走这个步长,看下哪个方向最优,最优的话则留下来,然后步长*p,p就是控制的系数,然后如此重复。当然退火的含义就是有些时候我们会选择跳出当前的局部最优解,这个概率是预先设定的,在今天这题里貌似也不需要设定这样的概率,感觉有种水过去的感觉,贴一记代码

#pragma warning(disable:4996)
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<vector>
#include<cmath>
#define maxn 100
#define eps 1e-6
using namespace std;


double x[maxn], y[maxn], z[maxn];
int n;

double cal(double a, double b, double c)
{
	double ans = 0;
	for (int i = 0; i < n; i++){
		ans += sqrt((x[i] - a)*(x[i] - a) + (y[i] - b)*(y[i] - b) + (z[i] - c)*(z[i] - c));
	}
	return ans;
}

int main()
{
	while (cin >> n)
	{
		for (int i = 0; i < n; i++){
			scanf("%lf%lf%lf", x + i, y + i, z + i);
		}
		double curx, cury, curz;
		double nxtx, nxty, nxtz;
		curx = cury = curz = 0;
		double cur = cal(curx, cury, curz);
		double step = 1500;
		while (step>eps){
			double tmpx = -1, tmpy = -1, tmpz = -1; bool upd = false;
			for (int i = -1; i <= 1; i++){
				for (int j = -1; j <= 1; j++){
					for (int k = -1; k <= 1; k++){
						nxtx = curx + step*i;
						nxty = cury + step*j;
						nxtz = curz + step*k;
						double nxt = cal(nxtx, nxty, nxtz);
						if (nxt < cur){
							tmpx = curx + step*i;
							tmpy = cury + step*j;
							tmpz = curz + step*k;
							cur = nxt;
							upd = true;
						}
					}
				}
			}
			if (upd) {
				curx = tmpx; cury = tmpy; curz = tmpz;
			}
			step *= 0.997;
		}
		printf("%.3lf %.3lf %.3lf\n", curx, cury, curz);
	}
	return 0;
}

 

posted @ 2014-03-27 22:31  chanme  阅读(329)  评论(0编辑  收藏  举报