csapp-datalab(菜鸟小白版)
第1题:
/*
* bitXor - x^y using only ~ and &
* Example: bitXor(4, 5) = 1
* Legal ops: ~ &
* Max ops: 14
* Rating: 1
*/
int bitXor(int x, int y) {
return (~(x&y))&(~((~x)&(~y)));
}
第2题:
二进制补码表示的最小值为0x80000000
/*
* tmin - return minimum two's complement integer
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 4
* Rating: 1
*/
int tmin(void) {
return 1<<31;
}
第3题:
二进制补码表示的最大值为0x7FFFFFFF
tmax+1的相反数是本身,!!x_1是为了消除x=-1的影响
//2
/*
* isTmax - returns 1 if x is the maximum, two's complement number,
* and 0 otherwise
* Legal ops: ! ~ & ^ | +
* Max ops: 10
* Rating: 1
*/
int isTmax(int x) {
int x_1=x+1;
return (!(((~x_1)+1)^x_1))&(!!x_1);
}
第4题:
0xAAAAAAAA正好对应所有奇数位是1的情况
因为题目限制常数只能使用0到255,所以不能直接使用0xAAAAAAAA
通过(0xAA<<8)+0xAA创造0x0000AAAA
通过(half_bits<<16)+half_bits创造0xAAAAAAAA
先用(x&all_bits)清除偶数位
/*
* allOddBits - return 1 if all odd-numbered bits in word set to 1
* where bits are numbered from 0 (least significant) to 31 (most significant)
* Examples allOddBits(0xFFFFFFFD) = 0, allOddBits(0xAAAAAAAA) = 1
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 12
* Rating: 2
*/
int allOddBits(int x) {
int half_bits = (0xAA<<8)+0xAA;
int all_bits = (half_bits<<16)+half_bits;
return !((x&all_bits)^all_bits);
}
第5题:
/*
* negate - return -x
* Example: negate(1) = -1.
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 5
* Rating: 2
*/
int negate(int x) {
return (~x)+1;
}
第6题:
x-0x30,如果结果的符号位为1,说明x-0x30<0
0x39-x,如果结果的符号位为1,说明0x39-x<0
目标是得到,当x-0x30<0为0,0x39-x<0也为0时,最终结果才为1
001101011000
/*
* isAsciiDigit - return 1 if 0x30 <= x <= 0x39 (ASCII codes for characters '0' to '9')
* Example: isAsciiDigit(0x35) = 1.
* isAsciiDigit(0x3a) = 0.
* isAsciiDigit(0x05) = 0.
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 15
* Rating: 3
*/
int isAsciiDigit(int x) {
int left_bool = ((x+(~0x30)+1)>>31)&1;
int right_bool = ((0x39+(~x)+1)>>31)&1;
return !((left_bool^right_bool)|(left_bool&right_bool));
}
第7题:
~0为0xFFFFFFFF
当x!=0时,!x=0, (!(x)+(~0)=0xFFFFFFFF, (j&y)=y, (~j)&z=0
当x==0时,!x=1, (!(x)+(~0)=0, (j&y)=0, (~j)&z=z
/*
* conditional - same as x ? y : z
* Example: conditional(2,4,5) = 4
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 16
* Rating: 3
*/
int conditional(int x, int y, int z) {
int j = !(x)+(~0);
return (j&y)|((~j)&z)
}
第8题:
一开始的想法:未考虑x,y异号,在x、y最大和最小时,相减会溢出
改正后的想法:考虑两种情况,
异号时直接看x的符号,x为正数则x>y,否则x<y
同号时相减,看结果的符号
/*
* isLessOrEqual - if x <= y then return 1, else return 0
* Example: isLessOrEqual(4,5) = 1.
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 24
* Rating: 3
*/
int isLessOrEqual(int x, int y) {
int x_sign = (x>>31)&1;
int y_sign = (y>>31)&1;
int same_or_dif = (x_sign^y_sign);
return (same_or_dif&x_sign)|(!same_or_dif&!((y+(~x)+1)>>31)&1);
}
第9题:
0和0x80000000的相反数是其本身
利用了0+1=1,0xFFFFFFFF+1=0的规律
如果x==0,则x和x的相反数的符号移位|的结果仍为0
如果x!=0,则x和y的相反数的符号移位|的结果为0xFFFFFFFF
/*
* logicalNeg - implement the ! operator, using all of
* the legal operators except !
* Examples: logicalNeg(3) = 0, logicalNeg(0) = 1
* Legal ops: ~ & ^ | + << >>
* Max ops: 12
* Rating: 4
*/
int logicalNeg(int x) {
return ((x>>31)|(((~x)+1)>>31))+1;
}
第10题:
原文链接:https://blog.csdn.net/m0_51335239/article/details/125849757
我想得到第一行的异或统一正负数和之后的分而治之思想,但是不会具体落实,水平还是不够
/* howManyBits - return the minimum number of bits required to represent x in
* two's complement
* Examples: howManyBits(12) = 5
* howManyBits(298) = 10
* howManyBits(-5) = 4
* howManyBits(0) = 1
* howManyBits(-1) = 1
* howManyBits(0x80000000) = 32
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 90
* Rating: 4
*/
int howManyBits(int x) {
int temp = x ^ (x << 1);
int bit_16,bit_8,bit_4,bit_2,bit_1;
bit_16 = !!(temp >> 16) << 4;//0或16
temp = temp >> bit_16;
bit_8 = !!(temp >> 8) << 3;//0或8
temp = temp >> bit_8;
bit_4 = !!(temp >> 4) << 2;//0或4
temp = temp >> bit_4;
bit_2 = !!(temp >> 2) << 1;//0或2
temp = temp >> bit_2;
bit_1 = !!(temp >> 1);//0或1
return 1 + bit_1 + bit_2 + bit_4 + bit_8 + bit_16;
}
第11题:
首先判断是不是+0.0和-0.0
new_f是uf的绝对值,我也不知道为什么题目说是unsigned int,测试数据会出现负数0x80000000
然后判断是不是NaN
最后分别处理非规格化和规格化,非规格化数左移一位,规格化数的阶码部分加1
s是uf的符号,|s为了还原uf的符号
//float
/*
* floatScale2 - Return bit-level equivalent of expression 2*f for
* floating point argument f.
* Both the argument and result are passed as unsigned int's, but
* they are to be interpreted as the bit-level representation of
* single-precision floating point values.
* When argument is NaN, return argument
* Legal ops: Any integer/unsigned operations incl. ||, &&. also if, while
* Max ops: 30
* Rating: 4
*/
unsigned floatScale2(unsigned uf) {
int new_f = uf & (~(1<<31));
if (!new_f)
{
if(uf>>31)
{
return uf;
}
return 0;
}
else
{
int exp = new_f>>23;
int s = uf&(1<<31);
if(!(exp^0xFF)&&(new_f<<8))
{
return uf;
}
else if(!exp)
{
return (new_f<<1)|s;
}else
{
return (new_f+(1<<23))|s;
}
}
}
第12题:
https://www.cnblogs.com/zhiyiYo/p/16242033.html
/*
* floatFloat2Int - Return bit-level equivalent of expression (int) f
* for floating point argument f.
* Argument is passed as unsigned int, but
* it is to be interpreted as the bit-level representation of a
* single-precision floating point value.
* Anything out of range (including NaN and infinity) should return
* 0x80000000u.
* Legal ops: Any integer/unsigned operations incl. ||, &&. also if, while
* Max ops: 30
* Rating: 4
*/
int floatFloat2Int(unsigned uf) {
// 计算阶码
unsigned exp = (uf & 0x7f800000) >> 23;
int e = exp - 127;
// 0或小数直接返回 0
if (e < 0) {
return 0;
}
// NaN 或者 无穷大
if (e > 31) {
return 0x80000000;
}
// 尾数
int frac = (uf & 0x7fffff) | 0x800000;
// 移动小数点
if (e > 23) {
frac <<= (e - 23);
} else {
frac >>= (23 - e);
}
// 符号位不变
if (!((uf >> 31) ^ (frac >> 31))) {
return frac;
}
// 符号位变化,且当前符号为负,说明溢出
if (frac >> 31) {
return 0x80000000;
}
// 符号变化,返回补码
return ~frac + 1;
}
第13题:
参考原书第三版P82页图2-36内容
/*
* floatPower2 - Return bit-level equivalent of the expression 2.0^x
* (2.0 raised to the power x) for any 32-bit integer x.
*
* The unsigned value that is returned should have the identical bit
* representation as the single-precision floating-point number 2.0^x.
* If the result is too small to be represented as a denorm, return
* 0. If too large, return +INF.
*
* Legal ops: Any integer/unsigned operations incl. ||, &&. Also if, while
* Max ops: 30
* Rating: 4
*/
unsigned floatPower2(int x) {
if(x<-149){
return 0;
}else if (x>127)
{
return 0x7f800000;
}else
{
if(x<-126)
{
return 1<<(23+x+126);//非规格化数
}
return (x+127)<<23;//规格化数
}
}