摘要:
SVM支持向量机,作为一种分类方法,通过核函数将低维空间上线性不可分的样本映射到高维空间上线性可分的样本空间,通过核函数计算内积,得到一个线性分类器。 常用的核函数有多种,如线性核函数,多项式核函数,径向基核函数,Sigmoid核函数和复合核函数。libsvm用的是线性核函数,核函数的选取对分类器的性能有一定影响。 分类中的概念,如超平面(分类器构成的平面)、支撑向量、松弛向量、离散点、软间隔分类(加入松弛向量,可以容易离散点,容忍度可以通过参数调整)、硬间隔分类(没有松弛向量)、样本不均衡时会影响超平面的选择(欺负样本体积较小的类别,通过调整不同的松弛向量(可根据样本大小比例或体积比... 阅读全文