from keras.models import Sequential from keras.layers import Dense model = Sequential() model.add(Dense(128, activation='relu', input_shape=(784,))) model.add(Dense(10, activation='softmax'))
from keras.layers import Input, Dense from keras.models import Model input_1 = Input(shape=(32,)) input_2 = Input(shape=(64,)) x = Dense(16, activation='relu')(input_1) y = Dense(16, activation='relu')(input_2) output = Dense(1, activation='sigmoid')(x + y) model = Model(inputs=[input_1, input_2], outputs=output)
Dense(64, activation='relu')
Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1))
MaxPooling2D((2, 2))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.compile(optimizer='adam', loss='mse', metrics=['mae'])
from keras.metrics import Precision, Recall, F1Score model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=[Precision(), Recall(), F1Score()])
model.fit()
model.fit(x_train, y_train, epochs=10, batch_size=32)
x_train
y_train
model.evaluate()
model.predict()
y_pred = model.predict(x_test)
x_test
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· Docker 太简单,K8s 太复杂?w7panel 让容器管理更轻松!