C# 线程同步的多种方式

实际应用中多个线程往往需要共享数据,因此必须使用同步技术,确保一次只有一个线程访问和改变共享数据。同步又分为进程内部线程的同步以及进程之间线程的同步。

进程内部线程同步:

1. lock : 使用比较简单 lock(obj){ Synchronize part  };  只能传递对象,无法设置等待超时;

2. InterLocked:  原子操作,提供了以线程安全的方式递增,递减,交换和读取值的方法;

3. Monitor: lock语句等同于Monitor.Enter() ,同样只能传递对象,无法设置等待超时,如下:

            Monitor.Enter(obj){
                //Synchronized part
            }finally{
                Monitor.Exit(obj);
            }

另外使用Monitor.TryEnter(),可以传递等待超时,若获取锁,则布尔参考变量设为true,执行同步操作;若超时未获取锁,则布尔参考变量设为false,执行其他操作; 如下:

            bool lockTaken=false;
            Monitor.TryEnter(obj, 500, ref lockTaken);
            if(lockTaken){
                try
                {
                    //Synchronized part
                }
                finally
                {
                    Monitor.Exit(obj);
                }
            }else{
                //don't aquire the lock, excute other parts
            }

 进程之间线程同步:

1. WaitHandle: 一个抽象基类,用于等待一个信号的设置。 常用方法如下:

WaitOne(): 等待一个信号的出现,可设置超时;

WaitAll(): 等待多个信号的出现,可设置超时;

WaitAny(): 等待任意一个信号的出现,可设置超时;

Mutex类(Mutual Exclusion 互斥),EventWaitHandle类,Semaphore类 均派生自WaitHandle类。

2. Mutex: 与Monitor 类似,只有一个线程能够获取锁定。利用WaitOne() 获取锁定,利用ReleaseMutex() 解除锁定。构造函数使用如下:

            bool isNew = false;
            mutex = new Mutex(false, "Mutex1", out isNew);

参数1:锁创建后是否由主调线程拥有。 如果设为true,相当于调用了WaitOne(),需要释放,否则其他线程无法获取锁;

参数2:锁名称,可通过OpenExist()或TryOpenExist() 打开已有锁,因为操作系统识别有名称的互锁,所以可由不同的进程共享。若锁名称为空,就是未命名的互锁,不能在多个进程之间共享;

参数3:  是否为新创建的互锁;

下面的例子演示Mutex 在进程之间的使用:

    class Program
    {
        private static Mutex mutex = null;  
        static void Main(string[] args)
        {
            bool isNew = false;
            mutex = new Mutex(false, "Mutex1", out isNew);
            Console.WriteLine("Main Start....");
            mutex.WaitOne();
            Console.WriteLine("Aquire Lock and Running....");
            Thread.Sleep(10000);
            mutex.ReleaseMutex();
            Console.WriteLine("Release Lock....");
            Console.WriteLine("Main end....");
            Console.ReadLine();
        }
    }

连续2次运行这个控制台程序的exe,结果如下,首先运行的获取 Mutex1 互锁, 后面运行的会等待直到前面运行的释放 Mutex1 互锁。

 

 3.Semaphore: 信号量的作用于互斥锁类似,但它可以定义一定数量的线程同时使用。下面是构造函数:

            bool isNew = false;
            semaphore = new Semaphore(3, 3, "semaphore1", out isNew);

参数1:创建后,最初释放的锁的数量,如参数1设为2,参数2设为3,则创建后只有2个锁可用,另1个已经锁定;

参数2:定义可用锁的数量;

参数3:  信号量的名称,与Mutex类似;

参数4:否为新创建的互锁;

以下例子创建了信号量“semaphore1”,利用Parallel.For() 同步运行Func1() ,在Func1() 中,当线程获取信号量锁,释放锁或等待超时,都会在控制台里输出,

class Program
    {
        private static Semaphore semaphore = null;
        static void Main(string[] args)
        {

            Console.WriteLine("Main Start....");
            bool isNew = false;
            semaphore = new Semaphore(3, 3, "semaphore1", out isNew);
            Parallel.For(0, 6, Func1);
            Console.WriteLine("Main end....");
            Console.ReadLine();
        }

        static void Func1(int index)
        {
            Console.WriteLine("Task {0} Start....",Task.CurrentId);
            bool isComplete = false;
            while (!isComplete)
            {
                if (semaphore.WaitOne(1000))    
                {
                    try
                    {
                        Console.WriteLine("Task {0} aquire lock....", Task.CurrentId);
                        Thread.Sleep(5000);
                    }
                    finally
                    {
                        semaphore.Release();
                        Console.WriteLine("Task {0} release lock....", Task.CurrentId);
                        isComplete = true;
                    }
                }
                else
                {
                    Console.WriteLine("Task {0} timeout....", Task.CurrentId);
                }
            }
        }

运行结果如下,线程1,2,3首先获取信号量锁,线程4,5,6在等待,直到1,2,3释放,

Main Start....
Task 1 Start....
Task 1 aquire lock....
Task 2 Start....
Task 2 aquire lock....
Task 3 Start....
Task 3 aquire lock....
Task 4 Start....
Task 5 Start....
Task 6 Start....
Task 4 timeout....
Task 5 timeout....
Task 6 timeout....
Task 5 timeout....
Task 4 timeout....
Task 6 timeout....
Task 4 timeout....
Task 5 timeout....
Task 6 timeout....
Task 4 timeout....
Task 5 timeout....
Task 6 timeout....
Task 5 aquire lock....
Task 1 release lock....
Task 4 aquire lock....
Task 6 aquire lock....
Task 2 release lock....
Task 3 release lock....
Task 5 release lock....
Task 4 release lock....
Task 6 release lock....
Main end....

 4. AutoResetEvent 类:可以使用事件通知其他任务,构造函数为 public AutoResetEvent(bool initialState)。

当initialState=true,处于signaled 模式(终止状态),调用waitone() 也不会阻塞任务,等待信号,调用Reset()方法,可以设置为non-signaled 模式;

当initialState=fasle,处于non-signaled 模式(非终止状态),调用waitone() 会等待信号阻塞当前线程(可以在多个线程中调用,同时阻塞多个线程),直到调用set()发送信号释放线程(调用一次,只能释放一个线程),一般使用这种方式;

以下例子创建5个任务,分别调用waitone()阻塞线程,接着每隔2s 调用set(),

        private static AutoResetEvent autoReset = new AutoResetEvent(false);
        static void Main(string[] args)
        {
            Console.WriteLine("Main Start....");
            for (int i = 0; i < 5; i++)
            {
                Task.Factory.StartNew(() =>
                {
                    Console.WriteLine("{0} Start....", Task.CurrentId);
                    autoReset.WaitOne();
                    Console.WriteLine("{0} Continue....", Task.CurrentId);
                });
            }
            for (int i = 0; i < 5;i++ )
            {
                Thread.Sleep(2000);
                autoReset.Set();
            }
            Console.WriteLine("Main end....");
            Console.ReadLine();
        }

运行结果每次顺序略有不同,释放是随机的:

Main Start....
1 Start....
2 Start....
3 Start....
4 Start....
5 Start....
3 Continue....
1 Continue....
4 Continue....
2 Continue....
Main end....
5 Continue....

 5. ManualResetEvent 类:功能基本上和AutoSetEvent类似,但又一个不同点:

使用AutoSetEvent,每次调用set(),切换到终止模式,只能释放一个waitone(),便会自动切换到非终止模式;但ManualResetEvent,调用set(),切换到终止模式,可以释放当前所有的waitone(),需要手动调用reset()才能切换到非终止模式。

以下例子说明了这个不同的:

        private static ManualResetEvent manualReset = new ManualResetEvent(false);
        static void Main(string[] args)
        {
            Console.WriteLine("Main Start....");
            for (int i = 0; i < 5; i++)
            {
                Task.Factory.StartNew(() =>
                {
                    Console.WriteLine("{0} Start....", Task.CurrentId);
                    manualReset.WaitOne();
                    Console.WriteLine("{0} Continue....", Task.CurrentId);
                });
            }
            Thread.Sleep(2000);
            manualReset.Set();
            manualReset.WaitOne();
            Console.WriteLine("it doesn't work now, Main continue....");
            manualReset.Reset();
            manualReset.WaitOne();
            Console.WriteLine("Main end....");
            Console.ReadLine();
        }

运行结果:

Main Start....
1 Start....
2 Start....
3 Start....
4 Start....
5 Start....
5 Continue....
4 Continue....
3 Continue....
2 Continue....
it doesn't work now, Main continue....
1 Continue....

posted @ 2019-07-20 12:59  Change_Myself  阅读(14367)  评论(0编辑  收藏  举报