摘要:
学到新思路了:求解 \(k\) 大值时,可以将所有元素放一块一起跑。 考虑到 \(n,q\) 奇小无匹,我们便可以制造一个 \(O(qn\log V)\) 的代码。 那么对于我们不想在时间复杂度中出现的 \(m\),我们直接把他扔进可持久化 \(Trie\) 中销赃。 再根据刚才那个思路,将 \([ 阅读全文
摘要:
相当好的题目,虽然和我前几天出的题重了qwq。 \(lmx\) 是我们的红太阳,没有他我们就会死!!! 暴力枚举一个端点,然后用可持久化 \(01\ Trie\) 或者离线 \(Trie\)(当然这题用不了,但不强制在线的话是可以的)得到答案。时间复杂度 \(O(nm\log n)\),过不了,考虑 阅读全文
摘要:
三棵树就很毒瘤了,我们一棵一棵看。 关于第一棵树的路径,经典解法就是点分治和边分治,考虑哪种更加简单。 设 \(dis1/2/3(x)\) 表示 \(x\) 在第 \(1/2/3\) 棵树中的深度(第一棵树的深度当然是点到重心或重边的距离),\(lca2/3(x,y)\) 表示在第 \(2/3\) 阅读全文