摘要:
好题好题,太棒了这题! 直接想是十分困难的,你连 \(dp\) 状态都想不出合理的,因此考虑二分答案,转化成一个判定问题。下文 \(d\) 表示二分出的答案。 设 \(sum_i\) 表示 \(i\) 子树内的合法路径数,那他就一共分为两部分: 来自于 \(sum_{son}\),直接累加即可。 经 阅读全文
摘要:
考虑 \(i\) 排在 \(j\) 前的条件是 \(a_i+\max(a_j,b_i)+b_j\le a_j+\max(a_i,b_j)+b_i\),然后发现这一坨东西是皇后游戏中的倒数第三个式子,直接转化为 \(\min(a_j,b_i)\ge\min(a_i,b_j)\),然后就按皇后游戏中的排 阅读全文
摘要:
最小值最大,考虑二分答案,问题转为判断最小值是否能 \(\ge x\)。 假如 \(a_i\ge x\),那我们肯定不管;假如 \(a_i<x\),那最好能让选择的区间 \(r\) 值更大,用优先队列维护即可。区间增幅可以用树状数组维护。 时间复杂度 \(O(n\log^2n)\)。 #includ 阅读全文
摘要:
那她既然都说到老国王了,那肯定就是贪心了。 先声明两个引理: 引理1:若 \(\max(c,a)<\max(c,b)\) 时,定有 \(a<b\)。 引理2:\(\max(a,b)-a-b=-\min(a,b)\)。 证明就不说了,非常好证。 考虑 \(i,j\) 两大臣孰先孰后,假如 \(i\) 阅读全文
摘要:
好题好题。 难点在建图,因为图的边数将会决定最小生成树的时间复杂度。我们肯定希望能够只建 \(O(n)\) 级别的边,这样时间复杂度就可以做到 \(O(n\log n)\)。 观察到当 \(i,j,k\) 三个区间能够互相连边时(这里假设 \(a_i<a_j<a_k\)),我们绝对不会连 \((i, 阅读全文