空气阻力与速度的二次方成正比
运动至最高点过程
由牛顿第二定律:
\[\begin{aligned}
ma_x & = - kv^2_x \\
ma_y & = - (mg + kv^2_y)
\end{aligned}
\]
也即:
\[ m\frac{dv_x}{dt} = - kv^2_x \tag{2.1}
\]
\[ m\frac{dv_y}{dt} = -mg - kv^2_y \tag{2.2}
\]
速度与位移方程
对\((2.1)(2.2)\)式分离变量,且两边同时积分,
且当 \(t = 0,\, v_x = v_0\cos{\theta},\, v_y = v_0\sin{\theta}\),
可得:
\[ v_x = \frac{mv_0\cos{\theta}}{m + ktv_0\cos{\theta}} \tag{2.3}
\]
\[ v_y = \frac{mg\tan(-\frac{t\sqrt{mgk}}{m}) + v_0\sin{\theta}\sqrt{mgk}}{\sqrt{mgk} - kv_0\sin{\theta}\tan(-\frac{t\sqrt{mgk}}{m})} \tag{2.4.1}
\]
\[ v_y = \sqrt{\frac{mg}{k}}\tan(-t\sqrt{\frac{gk}{m}} + \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}})) \tag{2.4.2}
\]
对于\(v_x,v_y\),有:
\[\begin{aligned}
v_x & = \frac{dx}{dt} \\
v_y & = \frac{dy}{dt}
\end{aligned}
\]
对\(\text{(3)}\text{(4)}\)式分离变量,且两边同时积分,
且当 \(t = 0,\, x = x_0,\, y = y_0\),
可得:
\[ x = \frac{m}{k}\ln(1 + \frac{ktv_0\cos{\theta}}{m}) + x_0 \tag{2.5}
\]
\[ y = \frac{m}{k}\ln(\frac{kv_0\sin{\theta}\sin{\frac{t\sqrt{mgk}}{m}} }{\sqrt{mgk}} + \cos{\frac{t\sqrt{mgk}}{m}}) + y_0 \tag{2.6.1}
\]
\[ y = \frac{m}{k}\ln|\frac{\cos(t\sqrt{\frac{gk}{m}} - \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}{\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}| + y_0 \tag{2.6.2}
\]
轨迹方程
由\((2.5)\)可得:
\[ t = \frac{m}{kv_0\cos{\theta}}(e^{\frac{k}{m}(x - x_0)} - 1)
\]
消去\(t\),可得轨迹方程:
\[ y = \frac{m}{k}\ln(\frac{kv_0\sin{\theta}\sin{\frac{\frac{m}{kv_0\cos{\theta}}(e^{\frac{k}{m}(x - x_0)} - 1)\sqrt{mgk}}{m}} }{\sqrt{mgk}} + \cos{\frac{\frac{m}{kv_0\cos{\theta}}(e^{\frac{k}{m}(x - x_0)} - 1)\sqrt{mgk}}{m}}) + y_0 \tag{2.7.1}
\]
\[ y = \frac{m}{k}\ln|\frac{\cos(\frac{m}{kv_0\cos{\theta}}(e^{\frac{k}{m}(x - x_0)} - 1)\sqrt{\frac{gk}{m}} - \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}{\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}| + y_0 \tag{2.7.2}
\]
抛射体上升到最大高度
当\(v_y = 0\),抛射体上升到最大高度\(y_{max}\),由\((2.4.2)\)可得:
\[ t = \sqrt{\frac{m}{gk}}\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}})
\]
即抛射体上升到最大高度所需时间
\[ t_m = \sqrt{\frac{m}{gk}}\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}) \tag{2.8}
\]
再代入由\(\text{(6.2)}\)可得:
\[\begin{aligned}
& 因为\arctan x \in (-\pi/2,\pi/2) \\
y_{max} & = \frac{m}{k}\ln\frac{1}{\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))} + y_0 \\
\end{aligned}
\]
令\(c = \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}})\),那么\(\tan c = v_0\sin{\theta}\sqrt{\frac{k}{mg}}\)
\[ 1 + \tan^2 c = 1 + (v_0\sin{\theta}\sqrt{\frac{k}{mg}})^2 = \frac{1}{\cos^2c} \\
\Rightarrow \frac{1}{\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))} = \sqrt{1 + (v_0\sin{\theta}\sqrt{\frac{k}{mg}})^2}
\]
\[ y_m = \frac{m}{k}\ln\frac{1}{\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))} + y_0
\]
\[ y_m = \frac{m}{k}\ln\sqrt{1 + (v_0\sin{\theta}\sqrt{\frac{k}{mg}})^2} + y_0 \tag{2.9}
\]
由最高点下降过程
\(v_{y_2} < 0\)
由牛顿第二定律:
\[\begin{aligned}
ma_{x_2} & = - kv^2_{x_2} \\
ma_{y_2} & = - mg + kv^2_{y_2}
\end{aligned}
\]
也即:
\[ m\frac{dv_{x_2}}{dt} = - kv^2_{x_2} \tag{3.1}\\
\]
\[ m\frac{dv_{y_2}}{dt} = -mg + kv^2_{y_2} \tag{3.2} \\
\]
在最高点时,由\((3)(9)\)式,可得抛射体速度:
\[ v_{0x_2} = \cfrac{mv_0\cos{\theta}}{m + k\sqrt{\cfrac{m}{gk}}\arctan(v_0\sin{\theta}\sqrt{\cfrac{k}{mg}})v_0\cos{\theta}} \\
v_{0y_2} = 0
\]
速度与位移方程
对\((3.1)(3.2)\)式分离变量,且两边同时积分,
且当 \(t = t_m,\, v_{x_2} = v_{0x_2},\, v_{y_2} = 0\),
可得:
\[ v_{x_2} = \frac{mv_0\cos{\theta}}{m + ktv_0\cos{\theta}} \tag{3.3}
\]
\[v_{y_2} = -\sqrt{\frac{mg}{k}}\tanh{(\sqrt{\frac{k}{mg}}g(t-t_m))} \tag{3.4}
\]
对于\(v_{x_2},v_{y_2}\),有:
\[\begin{aligned}
v_{x_2} & = \frac{dx}{dt} \\
v_{y_2} & = \frac{dy}{dt}
\end{aligned}
\]
对\((3.3)(3.4)\)式分离变量,且两边同时积分,
且当 \(t = t_m,\, x = x_m,\, y = y_m\),
可得:
\[ x = \frac{m}{k}\ln(1 + \frac{ktv_0\cos{\theta}}{m}) + x_0 \tag{3.5}
\]
\[y = y_m -\frac{m}{k}\ln\cosh(\sqrt{\frac{k}{mg}}g(t-t_m)) \tag{3.6}
\]
轨迹方程
消去t
\[y = y_m -\frac{m}{k}\ln\cosh(\sqrt{\frac{k}{mg}}g(\frac{m}{kv_0\cos{\theta}}(e^{\frac{k}{m}(x - x_0)} - 1)-t_m)) \tag{3.7}
\]
\[y = \frac{m}{k}\ln\sqrt{1 + (v_0\sin{\theta}\sqrt{\frac{k}{mg}})^2} + y_0 -\frac{m}{k}\ln\cosh(\sqrt{\frac{k}{mg}}g(\frac{m}{kv_0\cos{\theta}}(e^{\frac{k}{m}(x - x_0)} - 1)- \sqrt{\frac{m}{gk}}\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))) \tag{3.8}
\]
运用至英雄吊射或飞镖视觉
-
视觉识别装甲板或其他方法定位装甲板,得到装甲板坐标\((x_0, y_0)\)
-
云台枪口移至装甲板正中心
-
以此时云台pitch轴为y轴,枪口朝向为x轴建立坐标系
-
将装甲板坐标转换至该坐标系
-
已知初始射速\(v_0\),目标装甲板坐标\((x_0, y_0)\)
使\((2.7.2)和(3.8)\)都是非线性方程,只能用数值求解的方式,使用牛顿迭代法求得数值解\(\theta\),这个解,即为解得pitch轴所需的转角
- 吊射前哨站,不需要使42mm弹丸做完整抛物线运动,即不需要使其运动至最高点才能击中前哨站,利用\((2.7.2)\)式,解得\(\theta\)
- 吊射基地,这个距离下需要使42mm弹丸运动至最高点才能击中基地,那么就需要\((2.8)\)式,解得\(\theta\)
同时需要寻找一个角度,在弹道稳定的情况下,在初射速存在波动的情况下也能命中目标TODO