为了简单起见,这里构造的系统只能识别数字0到9,需要识别的数字已经使用图形处理软件,处理成具有相同的色彩和大小:宽高是32像素的黑白图像。尽管采用文本格式存储图像不能有效地利用内存空间,但是为了方便理解,我们还是将图像转换为文本格式。
---1.收集数据:提供文本文件
该数据集合修改自“手写数字数据集的光学识别”-一文中的数据集合,该文登载于2010年10月3日的UCI机器学习资料库中http://archive.ics.uci.edu/ml。
---2.准备数据:将图像转换为测试向量
trainingDigits中包含了大约2000个例子,每个数字大约有200个样本;testDigits中包含了大约900个测试数据。两组数据没有重叠。
我们先将图像格式化处理为一个向量。我们将一个32*32的二进制图像矩阵转换为1*1024的向量。
我们首先编写函数img2vector,将图像转换为向量:该函数创建1*1024的NumPy数组,然后打开指定的文件,循环读出文件的前32行,并将每行的前32个字符值存储在NumPy数组中,最后返回数组。
#!/usr/bin/python # -*- coding: utf-8 -*- from numpy import * #引入科学计算包numpy from os import listdir import operator #经典python函数库,运算符模块 #算法核心 #inX:用户分类的输入向量,即将对其进行分类 #dataSet:训练样本集 #labels:标签向量 def classifyO(inX,dataSet,labels,k): #距离计算 dataSetSize=dataSet.shape[0] #得到数组的行数,即知道有几个训练数据 diffMat=tile(inX,(dataSetSize,1))-dataSet #tile是numpy中的函数,tile将原来的一个数组,扩充成了4个一样的数组;diffMat得到目标与训练数值之间的差值 sqDiffMat=diffMat**2 #各个元素分别平方 sqDistances=sqDiffMat.sum(axis=1) distances=sqDistances**0.5 #开方,得到距离 sortedDistIndicies=distances.argsort() #升序排列 #选择距离最小的k个点 classCount={} for i in range(k): voteIlabel=labels[sortedDistIndicies[i]] classCount[voteIlabel]=classCount.get(voteIlabel,0)+1 #排序 sortedClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True) return sortedClassCount[0][0] def img2vector(filename): returnVect=zeros((1,1024)) fr=open(filename) for i in range(32): lineStr=fr.readline() for j in range(32): returnVect[0,32*i+j]=int(lineStr[j]) return returnVect
在python命令行中输入下列命令测试img2vector函数,然后与本文编辑器打开的文件进行比较:
>>> import kNN >>> testVector=kNN.img2vector('digits/testDigits/0_13.txt') #根据自己的目录写 >>> testVector[0,0:31] array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) >>> testVector[0,32:63] array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
---3.测试算法:使用k-近邻算法识别手写数字
我们已经将数据处理成分类器可以识别的格式,现在要做的是将这些数据输入到分类器,检查分类器的执行结果。handwritingClassTest()是测试分类器的代码,将其写入kNN.py文件中。在写入之前,保证将from os import listdir写入文件的起始部分。这段代码主要功能是从os模块中导入函数listdir,它可以列出给定目录的文件名。
def handwritingClassTest(): hwLabels=[] trainingFileList=listdir('E:\\python excise\\digits\\trainingDigits') m=len(trainingFileList) trainingMat=zeros((m,1024)) for i in range(m): fileNameStr=trainingFileList[i] fileStr=fileNameStr.split('.')[0] classNumStr=int(fileStr.split('_')[0]) hwLabels.append(classNumStr) trainingMat[i,:]=img2vector('digits/trainingDigits/%s' %fileNameStr) testFileList=listdir('E:/python excise/digits/testDigits') errorCount=0.0 mTest=len(testFileList) for i in range(mTest): fileNameStr=testFileList[i] fileStr=fileNameStr.split('.')[0] classNumStr=int(fileStr.split('_')[0]) vectorUnderTest=img2vector('digits/testDigits/%s'%fileNameStr) classifierResult=classifyO(vectorUnderTest,trainingMat,hwLabels,3) print "the classifier came back with:%d,the real answeris:%d" %(classifierResult,classNumStr) if(classifierResult !=classNumStr):errorCount+=1.0 print "\nthe total number of error is:%d"%errorCount print "\nthe total error rate is:%f"%(errorCount/float(mTest))
解释:将E:\\python excise\\digits\\trainingDigits目录中的文件内容存储到列表trainingFileList中,然后可以得到文件中有有多少文件,并将其存储在变量m中。接着,代码创建一个m行1024列的训练矩阵,该矩阵的每行数据存储一个图像。我们可以从文件名中解析出分类数字,该目录下的文件按照规则命名,如文件9_45.txt的分类是9,它是数字9的第45个实例。然后我们可以将类代码存储到hwLabels向量中,使用前面的img2vector函数载入图像。
下一步中,对E:/python excise/digits/testDigits目录中文件执行相似的操作,不同的是我们并不将这个目录下的文件载入矩阵,而是使用classifyO()函数测试该目录下的每个文件。由于文件中的值已经在0和1之间,所以不用归一化。
在python命令提示符中输入kNN.handwritingClassTest(),测试该函数的输出结果。依赖于机器速度,夹在数据集可能需要话费很长时间,然后函数依次测试每个文件:
>>> kNN.handwritingClassTest() the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:0,the real answeris:0 the classifier came back with:1,the real answeris:1 the classifier came back with:1,the real answeris:1 the classifier came back with:1,the real answeris:1 the classifier came back with:1,the real answeris:1 ... the classifier came back with:9,the real answeris:9 the classifier came back with:9,the real answeris:9 the classifier came back with:9,the real answeris:9 the classifier came back with:9,the real answeris:9 the classifier came back with:9,the real answeris:9 the classifier came back with:9,the real answeris:9 the classifier came back with:9,the real answeris:9 the classifier came back with:9,the real answeris:9 the classifier came back with:9,the real answeris:9 the classifier came back with:9,the real answeris:9 the classifier came back with:9,the real answeris:9 the classifier came back with:9,the real answeris:9 the classifier came back with:9,the real answeris:9 the classifier came back with:9,the real answeris:9 the classifier came back with:9,the real answeris:9 the total number of error is:11 the total error rate is:0.011628
总结
k-近邻算法识别手写数字数据集,错误率为1.2%。改变变量k的值、修改函数handwritingClassTest随机选取训练样本、改变训练样本的数目,都会对k-近邻算法的错误率产生影响。