1.摘自:Cranial Implant Prediction using Low-Resolution 3D Shape Completion and High-Resolution 2D Refinement
Designing of a cranial implant needs a 3D understanding of the complete skull shape. Thus, taking a 2D approach is sub-optimal, since a 2D model lacks a holistic 3D view of both the defective and healthy skulls. Further, loading the whole 3D skull shapes at its original image resolution is not feasible in commonly available GPUs. To mitigate these issues, we propose a fully convolutional network composed of two subnetworks. The first subnetwork is designed to complete the shape of the downsampled defective skull. The second subnetwork upsamples the reconstructed shape slice-wise. We train both the 3D and 2D networks in tandem in an end-to-end fashion, with a hierarchical loss function. Our proposed solution accurately predicts a high-resolution 3D implant in the challenge test case in terms of dice-score and the Hausdorff distance.
设计颅内植入物需要对整个颅骨形状有一个三维的了解。因此,采用2D方法是次优的,因为2D模型缺乏缺陷和健康颅骨的整体3D视图。此外,以原始图像分辨率加载整个3D颅骨形状在一般的gpu上是不可行的。为了解决这些问题,我们提出了一个由两个子网络组成的全卷积网络。第一个子网络用于完成下采样缺陷颅骨的形状。第二个子网络对重构后的形状进行切片采样。我们以端到端方式串联训练3D和2D网络,并使用分层损失函数。我们提出的解决方案在挑战测试案例中根据骰子得分和Hausdorff距离准确预测了高分辨率3D种植体。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· Manus爆火,是硬核还是营销?
· 终于写完轮子一部分:tcp代理 了,记录一下
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通
2019-11-14 显示三维体素