Poincaré Lemma

记录一下 Poincaré 引理证明的想法, 尤其是链同伦的构造. 我 follow 的是 Bott-Tu 的书 Differential Forms in Algebraic Topology (GTM82). 目前只写了紧支上同调的 Poincaré 引理: \(H_c^{*+1}(M\times \mathbb{R}^1)\cong H_c^*(M)\).

Poincaré Lemma for Compactly Supported Cohomology

Let \(M\) be a smooth manifold. Then the product manifold \(M\times \mathbb{R}^1\) is a smooth manifold as well, and the projection \(\pi:M\times \mathbb{R}^1\to M\) is a smooth map. The pullback \(\pi^*:\Omega^*(M)\to \Omega^*(M\times \mathbb{R}^1)\) [1] does not map \(\Omega_c^*(M)\) into \(\Omega_c^*(M\times \mathbb{R}^1)\), so instead we consider the pushforward known as integration along the fiber

\[\begin{equation*} \pi_*:\Omega_c^*(M\times \mathbb{R}^1)\to \Omega_c^{*-1}(M)\quad \begin{cases} f(x,t)\pi^*\phi\mapsto 0\\ f(x,t)\mathrm{d}{t}\wedge\pi^*\phi\mapsto \left(\displaystyle\int_{-\infty}^{\infty} f(x,t) \,\mathrm{d}t\right)\phi \end{cases} \end{equation*} \]

where \(\phi\in \Omega^*(M)\) and \(f\in C_c^{\infty}(M\times \mathbb{R};\mathbb{R})\). (These two types of elements in \(\Omega_c^*(M\times \mathbb{R}^1)\) will soon be revisited.) It's quick to check that \(\pi_*\) is a chain map. We will show that the induced map \(\pi_*:H_c^*(M\times \mathbb{R}^1)\to H_c^{*-1}(M)\) is an isomorphism.

Take \(e=e(t)\mathrm{d}{t}\in \Omega_c^1(\mathbb{R}^1)\) such that \(\displaystyle\int_{\mathbb{R}^1} e=1\). Define

\[\begin{equation*} e_*:\Omega_c^*(M)\to \Omega_c^{*+1}(M\times \mathbb{R}^1)\quad \psi\mapsto e(t)\mathrm{d}{t}\wedge\pi^*\psi \end{equation*} \]

where the map \(t\mapsto e(t)\) has been identified with the composition \((x,t)\mapsto t\mapsto e(t)\). It's quick to check that \(e_*\) is a chain map, and \(\pi_*\circ e_*=\text{id}\) on \(\Omega_c^*(M)\). We will show that there is a chain homotopy \(K\) connecting \(e_*\circ \pi_*\) and \(\text{id}\) on \(\Omega_c^*(M\times \mathbb{R}^1)\), so that the induced map \(e_*:H_c^{*}(M)\to H_c^{*+1}(M\times \mathbb{R}^1)\) is the inverse of \(\pi_*:H_c^*(M\times \mathbb{R}^1)\to H_c^{*-1}(M)\).

We shall construct the desired chain homotopy \(K:\Omega_c^*(M\times \mathbb{R}^1)\to \Omega_c^{*-1}(M\times \mathbb{R}^1)\) from the basic relation

\[\begin{equation*} \text{id}-e_*\circ \pi_*=\mathrm{d}K+K \mathrm{d} \end{equation*} \]

To proceed, interpret this relation on the aforementioned two types of elements in \(\Omega_c^*(M\times \mathbb{R}^1)\), and be reminded that computations will be done w.r.t. some specific local coordinates.

  • For \(f(x,t)\pi^*\phi\), we require

\[ \begin{equation*} f(x,t)\pi^*\phi=\mathrm{d}K(f(x,t)\pi^*\phi)+K \left[\left(\displaystyle\sum_i \dfrac{\partial f}{\partial x^i}(x,t)\mathrm{d}{x^i}+\dfrac{\partial f}{\partial t}(x,t)\mathrm{d}{t}\right)\wedge \pi^*\phi+f(x,t)\pi^*\mathrm{d}{\phi}\right] \end{equation*} \]

  • For \(f(x,t)\mathrm{d}{t}\wedge\pi^*\phi\), we require

\[ \begin{align*} &f(x,t)\mathrm{d}{t}\wedge\pi^*\phi-e(t)\mathrm{d}{t}\wedge\pi^*\left[\left(\displaystyle\int_{-\infty}^{\infty} f(x,t) \,\mathrm{d}t\right)\phi\right]\\ &=\mathrm{d}K(f(x,t)\mathrm{d}{t}\wedge\pi^*\phi)+K \left[-\displaystyle\sum_i \dfrac{\partial f}{\partial x^i}(x,t)\mathrm{d}{t}\wedge\mathrm{d}{x^i}\wedge\pi^*\phi-f(x,t)\mathrm{d}{t}\wedge\pi^*\mathrm{d}{\phi}\right] \end{align*} \]

We observe that when \(\displaystyle\int_{-\infty}^{\infty} f(x,t) \,\mathrm{d}t=0\), or equivalently, \(f\in \dfrac{\partial }{\partial t}(C_c^{\infty}(M\times \mathbb{R}^1))\), the two requirements become very close. An immediate guess follows:

\[\begin{equation*} K_1(f(x,t)\pi^*\phi)=0,\quad K_1(f(x,t)\mathrm{d}{t}\wedge\pi^*\phi)=\left(\displaystyle\int_{-\infty}^{t} f(x,t) \,\mathrm{d}t\right)\pi^*\phi \end{equation*} \]

whenever \(\phi\in \Omega^*(M)\) and \(f\in C_c^*(M\times \mathbb{R}^1)\). While \(K_1\) solves the first requirement, it does not reconcile with the second:

\[\begin{align*} &\mathrm{d}K_1(f(x,t)\mathrm{d}{t}\wedge\pi^*\phi)+K_1 \left[-\displaystyle\sum_i \dfrac{\partial f}{\partial x^i}(x,t)\mathrm{d}{t}\wedge\mathrm{d}{x^i}\wedge\pi^*\phi-f(x,t)\mathrm{d}{t}\wedge\pi^*\mathrm{d}{\phi}\right]\\ =&\mathrm{d}\left[\left(\displaystyle\int_{-\infty}^{t} f(x,t) \,\mathrm{d}t\right)\pi^*\phi\right]-\displaystyle\sum_i \left(\displaystyle\int_{-\infty}^{t} \dfrac{\partial f}{\partial x^i}(x,t) \,\mathrm{d}t\right)\mathrm{d}{x^i}\wedge \pi^*\phi-\left(\displaystyle\int_{-\infty}^{t} f(x,t) \,\mathrm{d}t\right)\pi^*\mathrm{d}{\phi}\\ =&f(x,t)\mathrm{d}{t}\wedge \pi^*\phi \end{align*} \]

However, the computation also indicates that we are not far away from success, with only one term involving \(e=e(t)\mathrm{d}{t}\) missing.

As a remedy, consider \(K_2=K-K_1\). It suffices to construct \(K_2\) in the same fashion:

  • For \(f(x,t)\pi^*\phi\), we require

\[ \begin{equation*} 0=\mathrm{d}K_2(f(x,t)\pi^*\phi)+K_2 \left[\left(\displaystyle\sum_i \dfrac{\partial f}{\partial x^i}(x,t)\mathrm{d}{x^i}+\dfrac{\partial f}{\partial t}(x,t)\mathrm{d}{t}\right)\wedge \pi^*\phi+f(x,t)\pi^*\mathrm{d}{\phi}\right] \end{equation*} \]

  • For \(f(x,t)\mathrm{d}{t}\wedge\pi^*\phi\), we require

\[ \begin{align*} &-e(t)\mathrm{d}{t}\wedge\pi^*\left[\left(\displaystyle\int_{-\infty}^{\infty} f(x,t) \,\mathrm{d}t\right)\phi\right]\\ &=\mathrm{d}K_2(f(x,t)\mathrm{d}{t}\wedge\pi^*\phi)+K_2 \left[-\displaystyle\sum_i \dfrac{\partial f}{\partial x^i}(x,t)\mathrm{d}{t}\wedge\mathrm{d}{x^i}\wedge\pi^*\phi-f(x,t)\mathrm{d}{t}\wedge\pi^*\mathrm{d}{\phi}\right] \end{align*} \]

It is again natural to set \(K_2(f(x,t)\pi^*\phi)=0\), and so the first requirement simplifies to

\[\begin{equation*} K_2 \left(\dfrac{\partial f}{\partial t}(x,t)\mathrm{d}{t}\wedge \pi^*\phi\right)=0 \end{equation*} \]

Now we focus on the second requirement. Note that

\[\begin{align*} &\hphantom{=}e(t)\mathrm{d}{t}\wedge\pi^*\left[\left(\displaystyle\int_{-\infty}^{\infty} f(x,t) \,\mathrm{d}t\right)\phi\right]\\ &=\mathrm{d}\left(\displaystyle\int_{-\infty}^{t} e(t) \,\mathrm{d}t\right)\wedge\pi^*\left[\left(\displaystyle\int_{-\infty}^{\infty} f(x,t) \,\mathrm{d}t\right)\phi\right]+\left(\displaystyle\int_{-\infty}^{t} e(t) \,\mathrm{d}t\right)\mathrm{d}\pi^*\left[\left(\displaystyle\int_{-\infty}^{\infty} f(x,t) \,\mathrm{d}t\right)\phi\right]\\ &\hphantom{=\mathrm{d}\left(\displaystyle\int_{-\infty}^{t} e(t) \,\mathrm{d}t\right)\wedge\pi^*\left[\left(\displaystyle\int_{-\infty}^{\infty} f(x,t) \,\mathrm{d}t\right)\phi\right]}-\left(\displaystyle\int_{-\infty}^{t} e(t) \,\mathrm{d}t\right)\mathrm{d}\pi^*\left[\left(\displaystyle\int_{-\infty}^{\infty} f(x,t) \,\mathrm{d}t\right)\phi\right]\\ &=\mathrm{d}\left\{\left(\displaystyle\int_{-\infty}^{t} e(t) \,\mathrm{d}t\right)\pi^*\left[\left(\displaystyle\int_{-\infty}^{\infty} f(x,t) \,\mathrm{d}t\right)\phi\right]\right\}\\ &\hphantom{=}-\left(\displaystyle\int_{-\infty}^{t} e(t) \,\mathrm{d}t\right)\pi^*\left[\displaystyle\sum_i \left(\displaystyle\int_{-\infty}^{\infty} \dfrac{\partial f}{\partial x^i}(x,t) \,\mathrm{d}t\right)\mathrm{d}{x^i}\wedge \phi+\left(\displaystyle\int_{-\infty}^{\infty} f(x,t) \,\mathrm{d}t\right)\mathrm{d}{\phi}\right] \end{align*} \]

An immediate guess follows:

\[\begin{equation*} K_2(f(x,t)\mathrm{d}{t}\wedge \pi^*\phi)=-\left(\displaystyle\int_{-\infty}^{t} e(t) \,\mathrm{d}t\right)\pi^*\left[\left(\displaystyle\int_{-\infty}^{\infty} f(x,t) \,\mathrm{d}t\right)\phi\right] \end{equation*} \]

which indeed solves the second requirement, and together with \(K_2(f(x,t)\pi^*\phi)=0\), solves the first, since

\[\begin{equation*} \displaystyle\int_{-\infty}^{\infty} \dfrac{\partial f}{\partial t}(x,t) \,\mathrm{d}t=0 \end{equation*} \]

Conclusion: The map \(K: \Omega_c^{*}(M\times \mathbb{R}^1)\to \Omega_c^{*-1}(M\times \mathbb{R}^1)\) defined by

\[\begin{equation*} \begin{cases} f(x,t)\pi^*\phi\mapsto 0\\ f(x,t)\mathrm{d}{t}\wedge\pi^*\phi\mapsto \left(\displaystyle\int_{-\infty}^{t} f(x,t) \,\mathrm{d}t\right)\pi^*\phi-\left(\displaystyle\int_{-\infty}^{t} e(t) \,\mathrm{d}t\right)\pi^*\left[\left(\displaystyle\int_{-\infty}^{\infty} f(x,t) \,\mathrm{d}t\right)\phi\right] \end{cases} \end{equation*} \]

is a chain homotopy connecting \(e_*\circ \pi_*\) and \(\text{id}\) on \(\Omega_c^*(M\times \mathbb{R}^1)\), and consequently the maps

\[\begin{equation*} H_c^{*+1}(M\times \mathbb{R})\begin{matrix}\xrightarrow{\pi_*}\\ \xleftarrow[e_*]{}\end{matrix}H_c^*(M) \end{equation*} \]

are isomorphisms.

As a corollary, for each positive integer \(n\), there holds

\[\begin{equation*} H_c^*(\mathbb{R}^n)=\begin{cases} \mathbb{R}, &\text{in dimension $n$}\\ 0, &\text{elsewhere} \end{cases} \end{equation*} \]

where the isomorphism \(H_c^*(\mathbb{R}^n)\xrightarrow{\cong}\mathbb{R}\) is given by iterated \(\pi_*\), i.e., by integration over \(\mathbb{R}^n\), thanks to Fubini's theorem. Besides, by iterating \(e_*\), we see that a generator of \(H_c^n(\mathbb{R}^n)\) is represented by a bump \(n\)-form \(\alpha=\alpha(x)\mathrm{d}{x^1}\wedge\cdots\wedge \mathrm{d}{x^n}\) with \(\displaystyle\int_{\mathbb{R}^n} \alpha=1\), whose support can be made as small as possible.


  1. [To be explicit, if \(\phi\in \Omega^r(M)\) is represented as \(\sum_{i_1<\cdots<i_r}\phi_{i_1\cdots i_r}(x)\mathrm{d}{x^{i_1}}\wedge\cdots\wedge \mathrm{d}{x^{i_r}}\) w.r.t. some chosen local coordinates on \(M\), then \(\pi^*\phi\in \Omega^r(M\times \mathbb{R})\) is simply represented as \(\sum_{i_1<\cdots<i_r}\phi_{i_1\cdots i_r}\circ \pi(x,t)\mathrm{d}{x^{i_1}}\wedge\cdots\wedge \mathrm{d}{x^{i_r}}\) w.r.t. the associataed local coordinates on \(M\times \mathbb{R}^1\).] ↩︎

posted @ 2022-04-23 17:20  ChaliceSeven  阅读(85)  评论(0编辑  收藏  举报