summary

Summary

The performance of high-precision optical systems using spherical optics is limited by aberrations. By applying aspherical and freeform optics, the geometrical aberrations can be reduced or eliminated while at the same time also reducing the required number of components, the size and the weight of the system. New manufacturing techniques enable creation of high-precision freeform surfaces. Suitable metrology (high accuracy, universal, non-contact, large measurement volume and short measurement time) is key in the manufacturing and application of these surfaces, but not yet available. In this thesis, the design, realization and testing of a new metrology instrument is described. This measurement machine is capable of universal, noncontact and fast measurement of freeform optics up to ∅500 mm, with an uncertainty of 30 nm (2σ). 

A cylindrical scanning setup with an optical distance probe has been designed. This concept is non-contact, universal and fast. With a probe with 5 mm range, circular tracks on freeform surfaces can be measured rapidly with minimal dynamics. By applying a metrology frame relative to which the position of the probe and the product are measured, most stage errors are eliminated from the metrology loop. Because the probe is oriented perpendicular to the aspherical best-fit of the surface, the sensitivity to tangential errors is reduced. This allows for the metrology system to be 2D. The machine design can be split into three parts: the motion system, the metrology system and: the non-contact probe.

The motion system positions the probe relative to the product in 4 degrees of freedom. The product is mounted on an air bearing spindle (), and the probe is positioned over it in radial (r), vertical (z) and inclination (ψ) direction by the R-stage, Z-stage and Ψaxis, respectively. The motion system provides a sub-micrometer repeatable plane of motion to the probe. The Z-stage is hereto aligned to a vertical plane of the granite base using three air bearings, to obtain a parallel bearing stage configuration. To minimize distortions and hysteresis, the stages have separate position and preload frames. Direct drive motors and high resolution optical scales and encoders are used for positioning. Mechanical brakes are applied while measuring a track, to minimize power dissipation and to exclude encoder, amplifier and EMC noise. The motors, brakes and weight compensation are aligned to the centres of gravity of the R and Zstage. Stabilizing controllers have been designed based on frequency response measurements.

The metrology system measures the position of the probe relative to the product in the six critical directions in the plane of motion of the probe (the measurement plane). By focussing a vertical and horizontal interferometer onto the Ψ-axis rotor, the displacement of the probe is measured relative to the reference mirrors on the upper Summary

metrology frame. Due to the reduced sensitivity in tangential direction at the probe tip, the Abbe criterion is still satisfied. Silicon Carbide is the material of choice for the upper metrology frame, due to its excellent thermal and mechanical properties. Mechanical and thermal analysis of this frame shows nanometer-level stabilities under the expected thermal loads. Simulations of the multi-probe method show capabilities of in process separation of the spindle reference edge profile and the spindle error motion with sub-nanometer uncertainty. 

The non-contact probe measures the distance between the Ψ-axis rotor and the surface under test. A dual stage design is applied, which has 5 mm range, nanometer resolution and 5° unidirectional acceptance angle. This enables the R and Z-stage and Ψ-axis to be stationary during the measurement of a circular track on a freeform surface. The design consists of a compact integration of the differential confocal method with an interferometer. The focussing objective is positioned by a flexure guidance with a voice coil actuator. A motion controller finds the surface and keeps the objective focused onto it with some tens of nanometers servo error. 

The electronics and software are designed to safely operate the 5 axes of the machine and to acquire the signals of all measurement channels. The electronics cabinet contains a real-time processor with many in and outputs, control units for all 5 axes, a safety control unit, a probe laser unit and an interferometry interface. The software consists of three main elements: the trajectory planning, the machine control and the data processing. Emphasis has been on the machine control, in order to safely validate the machine performance and perform basic data-processing.

The performance of the machine assembly has been tested by stability, single track and full surface measurements. The measurements focus on repeatability, since this is a key condition before achieving low measurement uncertainty by calibration. The measurements are performed on a ∅100 mm optical flat, which was calibrated by NMi VSL to be flat within 7 nm rms. At standstill, the noise level of the metrology loop is 0.9 nm rms over 0.1 s. When measuring a single track at 1 rev/s, 10 revolutions overlap within 10 nm PV. The repeatability of three measurements of the flat, tilted by 13 μm, is 2 nm rms. The flatness measured by the uncalibrated machine matches the NMi data well. Ten measurements of the flat tilted by 1.6 mm repeat to 3.4 nm rms.

A new non-contact measurement machine prototype for freeform optics has been developed. The characteristics desired for a high-end, single piece, freeform optics production environment (high accuracy, universal, non-contact, large measurement volume and short measurement time) have been incorporated into one instrument. The validation measurement results exceed the expectations, especially since they are basically raw data. Future calibrations and development of control and dataprocessing software will certainly further improve these results.  

Nomenclature

 

 

Symbol         Description                                                             Unit

             

A                  Amplitude                                                              [m]

A, AS, Ap             Area, Surface area, Porous plug surface area               [m2]

A                               Jones matrix   - B Beam width   [m]

B                               Magnetic flux density    [T]

D                              Diameter       [m] D0, Dph, Dz      Beam waist diameter, Pinhole diameter, e-2 diameter [m]

E                               Young’s modulus   [N/m2]

 

Ex ,Ey             Electric field vector                                                 [-]

Ec                 Contact modulus                                                     [N/m2]

F                               Force     [N]

Fc, Fg, Fa       Spring force, gravity force, acceleration force             [N]

F1,2                          View factor                                                             [-]

G                              Shear modulus       [N/m2]

Gc                 Contact shear modulus                                             [N/m2]

H                              Beam height   [m]

H                  Partial water vapour pressure                                    [Pa]

 

H                              Complex transfer coefficient column    [-]

I                                 Current   [A]

I                   Irradiance                                                               [W/m2]

I                   Planar moment of inertia against bending                   [m4]

J, Ji,j             Moment of inertia (of part i in direction j)                  [kgm2]

L                               Length    [m]

LP                            Probe length                                                           [m]

M                              Moment [Nm]

M                 Mass flow                                                               [kg/s]

P                  Pressure                                                                 [Pa]

PS, PA, PR       Bearing pressure (supply, atmospheric, restriction)      [Pa]

P                  Line load                                                                [N/m]

P                  Power                                                                    [W]

Pax, Prad Profile (axial and radial)       [m] Q     Normalized volume flow rate       [l/min]

R                  Radius                                                                   [m]

R                  Radial position                                                        [m]

R                  Flow resistance                                                       [Pa.s/m3]

R                  Gas constant                                                          [J/(kmol⋅K)]

R    Rotation matrix     [-] Nomenclature

 

 

Ra           Raleigh number                                                       [-]

Ra       Roughness                                                              [m]

Rc   Radius of curvature       [m] Rc    Contact radius       [m]

Sax, Srad Sum signal (axial, radial)                                         [m]

T         Temperature                                                           [K] or [°C]

T         Tangential force                                                      [N]

V         Volume                                                                  [m3]

Z         Height, Vertical position                                           [m]

             

a,b,c,α,β,γLocal probe coordinate system                            [m]

a,b,c,d,e,f,g Sum factors       [-] a Major contact radius [m] b Minor contact radius [m] b Half contact width [m] b Beam wall thickness [m] b Gap width [m]

c, ci,j       Stiffness (of part i in direction j)                                [N/m]

cp Specific heat     [J/kg/K] e Relative radial bearing eccentricity [-] eax , erad Phase vector        [-]

f, fe Frequency, eigenfrequency [Hz] f Focal length     [m]

g                                Gravitational acceleration     [m/s2] g Geometry factor    [m-3] h    Hinge thickness        [m] h      Bearing gap height        [m]

h                                Convection coefficient   [W/m2/K]

hax, hrad  Complex transfer coefficient [-] j Complex number     [-]

k, ki,j Rotation stiffness (of part i in direction j) [Nm/rad] k Thermal conductivity [W/m/K] k, klimit Harmonic number, harmonic limit [upr] kF Motor force constant [N/A] km Motor constant        [N/√W]

kp             Permeability                                                           [m2]

kT Motor torque constant [Nm/A] l Length   [m] m Mass   [kg]

mi       Measurement signal of probe i                                  [m]

n Refractive index [-] n Number of coil windings [-] n Normal vector      [-]

 

n

Noise level column

[m]

q

Heat transfer rate

[W]

q”

Heat flux

[W/m2]

r

Radius

[m]

r,y,z,ϕ,ψ,θ

Modified Cartesian coordinate system as used in this thesis

[m]

s

Bearing porous plug thickness

[m]

t

Time

[s]

t

Thickness

[m]

t

 t

Hinge width

Tangential vector

[m]

[-]

u

Position from focus along optical axis

[m]

w

Relative beam displacement (walk-off)

[m]

w

Width

[m]

z

Distance from focus along optical axis

[m]

zr

Rayleigh range

[m]

zg

Floor vibration amplitude

[m]

x,y,z

 

 

 

Cartesian coordinate system

[m]

Greek

Description

Unit

 

 

 

Δn, Δt, Δs,

Resulting error (normal, tangential, slope)

[m]

Φ

Contact tangential displacement correction factor

[-]

 

 

 

α

Thermal expansion coefficient

[m/m/K]

α,β,γ

Rotations in a,b,c coordinate system

[rad]

δ

Deflection

[m]

δi,j

Position error of part i in direction j

[m]

δn, δt

Position error at probe tip (normal, tangential)

[m]

δ

Vibration amplitude at probe

[m]

ε

Emissivity

[-]

ε

Wavefront alignment difference

[rad]

ζ

Rotation in polar coordinate system

[rad]

η

Dynamic viscosity

[Pa.s]

η

Local surface slope

[°]

θ

Divergence

[rad]

θi

Angular position of probe i

[°]

κ

Wavefront curvature difference

[m]

λ

Wavelength

[m]

 

Friction coefficient

[-]

ν

Poisson’s ration

[-]

Nomenclature

 

 

ρ

Density

[kg/m3]

ρc

Resistivity

[Ωm]

σ

Stress

[N/m2]

σ

Boltzmann constant

[W/m2/K4]

σ

Standard deviation ( = rms)

[m] or [rad]

σHz

Hertzian contact stress

[N/m2]

τ

Shear stress

[N/m2]

φ, φt, φκ

Optical phase error from wavefront tilt or curvature

[rad]

ϕ,ψ,θ

Rotations in r,y,z coordinate system

[rad]

ω

 

 

 

Angular frequency

[rad/s]

Subscript

Description

 

 

 

 

CG

Centre of gravity

 

P

Probe

 

R

R-stage

 

S

Spindle

 

SUT

Surface under test

 

Z

Z-stage

 

Ψ

 

Ψ-axis

 

a,b,c

In direction of local coordinate system

 

ax

Axial

 

dl

Dimensionless

 

e

Erroneous component

 

enc

Encircled

 

eq

Equivalent

 

f

Frame

 

g

Floor

 

i

Index

 

i,j

Property of part i in direction j

 

isol

Isolator

 

max

Maximum

 

mov

Moving

 

norm

Normalized

 

ph

Pinhole

 

rad

Radial

 

s

Shield

 

stat

Stationary

 

t

True component

 

t-b

Top – Bottom

 

tilt Tip – tilt (no axial rotation)    tot Total       

                          Nominal                                                                          

                    Bulk                                                                               

 

 

 

Abbreviation    Description                                                                   

             

ADC               Analog to Digital Converter                                            

C                    Controller                                                                     

CC                  Corner Cube (retro reflector)                                           

CL                  Cylinder lens                                                                 

DAC                Digital to Analog Converter                                            

DOF      Degree of freedom         FES      Focus Error Signal         FJP      Fluid Jet Polishing  FL        Force Linearization        

FM                 Fold mirror                                                                    

FTP                Fractional Transferred Power                                           

IF                   Interferometer                                                                

I/O Digital input / output      MZC    Minimum Zone Circle    NA       Numerical Aperture       

NPBS              Non-polarizing beamsplitter                                            

P                    Plant                                                                             

PBS                 Polarizing beamsplitter                                                   

PD                  Photo Diode                                                                  

PH                  Pinhole                                                                         

PSD       Position Sensitive Detector    PTH     Pressure, Temperature, Humidity  

PU                  Pickup                                                                          

PV                  Peak-to-valley                                                               

QWP               Quarter wave plate                                                         

SH                  Sample & Hold                                                              

SPDT     Single Point Diamond Turning      SSiC     Sintered Silicon Carbide        SUT Surface under test  TG       Traject Generator    

TIR                 Total Indicator Reading                                                  

         rms      Root-mean-square  upr       Undulations per revolution     

Table of contents

 

Summary                                                                                                      i

Samenvatting                                                                                               iii

Nomenclature                                                                                               v

Chapter 1 Introduction                                                                                  1

1.1   Aspherical and freeform optics ........................................................................1

            1.1.1      Advantages of aspherical and freeform optics.................................2

            1.1.2      Applications and trend.....................................................................3

            1.1.3      Surface properties and definitions....................................................6

            1.1.4      Current manufacturing methods.......................................................9

            1.1.5      Current metrology methods .............................................................9

1.2   The NANOMEFOS project............................................................................12

            1.2.1      Objective........................................................................................12

            1.2.2      Methods .........................................................................................13

1.3   Thesis outline .................................................................................................15

Chapter 2 Conceptual design                                                                       17

2.1   Conceptual considerations..............................................................................17

2.2   Machine concept.............................................................................................22

2.3   Error budget....................................................................................................25

2.3.1 Coordinate system definition.........................................................25 2.3.2 Error sensitivity..............................................................................26 2.3.3 Error budget...................................................................................28

2.4    Machine design overview...............................................................................30

2.4.1 Main design aspects.......................................................................30 2.4.2 Machine design overview ..............................................................33

Chapter 3 Motion system                                                                             35

3.1   Concept...........................................................................................................35

3.1.1 Requirements .................................................................................35 3.1.2 Basic components and principles used...........................................36 3.1.3 Motion system concept..................................................................43 3.1.4 Dynamic analysis...........................................................................51 3.1.5 Design overview ............................................................................52

3.2    Base................................................................................................................53

            3.2.1      Base block......................................................................................53

            3.2.2      Vibration isolation .........................................................................55

Table of contents

 

 

3.2.3      Transportation................................................................................59

3.2.4      Base assembly................................................................................60

3.2.5      Vibration measurement..................................................................60

3.3 Spindle ...........................................................................................................61

3.3.1      Air bearing spindle ........................................................................61

3.3.2       Product mounting table and intermediate body.............................63

3.3.3       Spindle brake.................................................................................64

3.3.4       Spindle assembly...........................................................................65

3.3.5       Error motion measurement............................................................66

3.4 Z-stage............................................................................................................69

3.4.1    Position frame................................................................................69 3.4.2 Preload frame.................................................................................74

3.4.3      Weight compensation ....................................................................76

3.4.4      Motor, brake and linear scale.........................................................80

3.4.5       Emergency brake...........................................................................82

3.4.6      Z-stage assembly ...........................................................................83

3.5 R-stage ...........................................................................................................84

3.5.1    Position frame................................................................................85 3.5.2 Preload frame.................................................................................88

3.5.3      Z-stage tube bearings.....................................................................91

3.5.4      Motor, brake and linear scale.........................................................92

3.5.5      Cable guidance ..............................................................................94

3.5.6       R-stage assembly...........................................................................95

3.6 Ψ-axis.............................................................................................................96

3.6.1      Air bearing.....................................................................................97

3.6.2       Motor, brake and encoder............................................................104

3.6.3 Probe nulling target .....................................................................105 3.6.4 Ψ-axis mount...............................................................................106

3.6.5      Ψ-axis assembly ..........................................................................111

3.7 Motion system assembly and alignment ......................................................112

3.7.1    Z-stage alignment ........................................................................112 3.7.2 Ψ-axis alignment .........................................................................113 3.7.3 Motion system assembly..............................................................114

3.7.4      Motion system assembly property summary ...............................115

3.8 Experiments and Calibration........................................................................116

3.8.1       Noise level...................................................................................116

3.8.2      Eigenfrequencies .........................................................................117

3.8.3       Stage tilt calibration.....................................................................117

3.9 Motion control..............................................................................................121

3.10 Conclusion ...................................................................................................123

Chapter 4 Metrology system                                                             125

4.1 Concept ........................................................................................................125

4.2 Interferometry system ..................................................................................130

            4.2.1      R and Z interferometer concept ...................................................130

            4.2.2      Probe interferometer polarization rotation...................................133

            4.2.3      Environmental disturbances.........................................................137

            4.2.4      Beam layout.................................................................................139

            4.2.5      Alignment tolerance analysis.......................................................140

            4.2.6      Design and realization..................................................................143

            4.2.7      Assembly and alignment..............................................................149

4.3   Upper metrology frame ................................................................................150

            4.3.1      Concept........................................................................................151

            4.3.2      Thermal analysis..........................................................................157

4.3.3 Mechanical analysis.....................................................................165 4.3.4 Design and realization..................................................................166

            4.3.5      Alignment and calibration............................................................172

4.4   Lower metrology frame................................................................................174

            4.4.1      Spindle error motion measurement..............................................174

            4.4.2      Multi-probe method.....................................................................176

            4.4.3      Design and realization..................................................................182

4.5   Metrology system assembly .........................................................................185

4.6   Experiments..................................................................................................186

            4.6.1      Stability measurements................................................................186

            4.6.2      Metrology frame shift..................................................................189

4.7   Conclusion....................................................................................................190

Chapter 5 Non-contact probe                                                                     191

5.1   Concept.........................................................................................................191

            5.1.1      Required probe characteristics.....................................................192

            5.1.2      Optical absolute distance measurement principles ......................194

            5.1.3      Probe concept...............................................................................195

            5.1.4      Rough or diffuse surfaces ............................................................199

5.2   Differential confocal analysis and testing ....................................................199

            5.2.1      Gaussian beam theory..................................................................200

            5.2.2      Normalized dimensionless focus error signal..............................201

            5.2.3      Test setup.....................................................................................203

            5.2.4      Optimization ................................................................................206

5.3    Design and realization..................................................................................206

            5.3.1     Optical design ..............................................................................206

            5.3.2      Main optics body..........................................................................209

            5.3.3       Objective guidance and actuator..................................................211

5.4 Probe assembly.............................................................................................220 5.5 Experiments..................................................................................................221

5.6    Installation and alignment on machine.........................................................224

5.7   Motion control .............................................................................................225

5.8   Conclusion....................................................................................................230

Table of contents

 

 

Chapter 6 Electronics and software                                                   231

6.1 Electronics....................................................................................................231 6.2 Software .......................................................................................................234

Chapter 7 Machine validation                                                           241

7.1 Machine assembly........................................................................................241

7.2 Machine validation.......................................................................................242

7.2.1      Stability measurements................................................................243

7.2.2       Single track measurements..........................................................246

7.2.3       Surface measurements.................................................................247

7.3 Calibration and nulling.................................................................................253

7.4 Achievable uncertainty estimation...............................................................255

7.5 Conclusion ...................................................................................................256

Chapter 8 Conclusion and recommendations                                     257

8.1 Conclusion ...................................................................................................257

8.2 Recommendations........................................................................................261

References

263

Appendix A Current fabrication methods

279

Appendix B Current metrology methods

283

B.1 Imaging techniques ......................................................................................284 B.2 Scanning techniques.....................................................................................286 B.3 Conclusion ...................................................................................................291

Appendix C Brake stiffness calculation

293

Appendix D Intermediate body concept

299

Appendix E Motion system stiffness and eigenfrequencies

301

E.1 Stiffness measurements................................................................................301

E.2 Eigenfrequency measurements.....................................................................302

Appendix F Interferometer shielding experiments                              305

Appendix G Upper metrology frame thermal analysis                        307

G.1 Beam deflection ...........................................................................................307

G.2 FEM model ..................................................................................................309

Appendix H Multi-probe method                                                      313

H.1 Axial profile reconstruction .........................................................................313 H.2 Analysis........................................................................................................316

H.3   Optimization.................................................................................................319

Appendix I Optical distance measurement principles

323

Dankwoord

327

Curriculum Vitae

331

posted @ 2018-04-09 13:57  lhmchn  阅读(719)  评论(0编辑  收藏  举报