剑指 Offer 62. 圆圈中最后剩下的数字(约瑟夫环问题)

题目:

思路:

【1】纯粹的模拟法

【2】数学解法,O(n)

示例:[0, 1, 2, 3, 4]

从最后剩下的 3 倒着看,我们可以反向推出这个数字在之前每个轮次的位置。
最后剩下的 3 的下标是 0。

第四轮反推,补上 mmm 个位置,然后模上当时的数组大小 222,位置是(0 + 3) % 2 = 1。
第三轮反推,补上 mmm 个位置,然后模上当时的数组大小 333,位置是(1 + 3) % 3 = 1。
第二轮反推,补上 mmm 个位置,然后模上当时的数组大小 444,位置是(1 + 3) % 4 = 0。
第一轮反推,补上 mmm 个位置,然后模上当时的数组大小 555,位置是(0 + 3) % 5 = 3。

所以最终剩下的数字的下标就是3。因为数组是从0开始的,所以最终的答案就是3。
总结一下反推的过程,就是 (当前index + m) % 上一轮剩余数字的个数。

代码展示:

//时间1056 ms击败9.82%
//内存44 MB击败5.13%
class Solution {
    public int lastRemaining(int n, int m) {
        ArrayList<Integer> list = new ArrayList<>(n);
        for (int i = 0; i < n; i++) {
            list.add(i);
        }
        int idx = 0;
        while (n > 1) {
            idx = (idx + m - 1) % n;
            list.remove(idx);
            n--;
        }
        return list.get(0);
    }
}


//时间4 ms击败98.93%
//内存38.3 MB击败76.26%
class Solution {
    public int lastRemaining(int n, int m) {
        int ans = 0;
        // 最后一轮剩下2个人,所以从2开始反推
        for (int i = 2; i <= n; i++) {
            ans = (ans + m) % i;
        }
        return ans;
    }
}

 

posted @ 2023-02-10 14:45  忧愁的chafry  阅读(30)  评论(0编辑  收藏  举报