http详解笔记
http详解笔记
http,(HyperText Transfer Protocol),超文本传输协议,亦成为超文本转移协议
通常使用的网络是在TCP/IP协议族的基础上运作的,HTTP属于它的一个子集。
TCP/IP协议族的分层
TCP/IP 协议族按层次分别分
为以下 4 层:应用层、传输层、网络层和数据链路层。
应用层
应用层决定了向用户提供应用服务时通信的活动。 TCP/IP 协议族内预存了各类通用的应用服务。比如,FTP(File Transfer Protocol,文件传输协议)和 DNS(Domain Name System,域 名系统)服务就是其中两类。 HTTP 协议也处于该层。
传输层
传输层对上层应用层,提供处于网络连接中的两台计算机之间的数据 传输。 在传输层有两个性质不同的协议:TCP(Transmission Control Protocol,传输控制协议)和 UDP(User Data Protocol,用户数据报 协议)。
网络层(又名网络互连层)
网络层用来处理在网络上流动的数据包。数据包是网络传输的最小数 据单位。该层规定了通过怎样的路径(所谓的传输路线)到达对方计 算机,并把数据包传送给对方。 与对方计算机之间通过多台计算机或网络设备进行传输时,网络层所 起的作用就是在众多的选项内选择一条传输路线。
链路层(又名数据链路层,网络接口层)
用来处理连接网络的硬件部分。包括控制操作系统、硬件的设备驱 动、NIC(Network Interface Card,网络适配器,即网卡),及光纤等 物理可见部分(还包括连接器等一切传输媒介)。硬件上的范畴均在 链路层的作用范围之内。
当在网页浏览器的地址栏中输入URL时的完整过程
如何看待三次握手
TCP 位于传输层,提供可靠的字节流服务。
字节流服务(ByteStreamService)是指,为了方便传输,将大块数据分割成以报文段(segment)为单位的数据包进行管理。而可靠的传输服务是指,能够把数据准确可靠地传给对方。一言以蔽之,TCP协议为了更容易传送大数据才把数据分割,而且TCP协议能够确认数据最终是否送达到对方。
因此采用了三次握手的策略来确保数据能到达目标
原理
握手过程中使用了TCP的标志(flag)——SYN(synchronize)和ACK(acknowledgement)。发送端首先发送一个带SYN标志的数据包给对方。接收端收到后,回传一个带有SYN/ACK标志的数据包以示传达确认信息。最后,发送端再回传一个带ACK标志的数据包,代表“握手”结束。
若在握手过程中某个阶段莫名中断,TCP协议会再次以相同的顺序发送相同的数据包。
展示
详细一点就是
如何看待四次挥手
原理
这种场景会出现的比较多的就是socket使用时,当A方传输完数据后,发起断开连接,B方接受并确认,就关闭B方的接收通道,此时A方还不能关闭。
等待B方发起断开请求,A方确认全部接收完后回复之后,A方才关闭接收通道。
展示
为什么“握手”是三次,“挥手”却要四次
TCP建立连接时之所以只需要"三次握手",是因为在第二次"握手"过程中,服务器端发送给客户端的TCP报文是以SYN与ACK作为标志位的。SYN是请求连接标志,表示服务器端同意建立连接;ACK是确认报文,表示告诉客户端,服务器端收到了它的请求报文。
即SYN建立连接报文与ACK确认接收报文是在同一次"握手"当中传输的,所以"三次握手"不多也不少,正好让双方明确彼此信息互通。
TCP释放连接时之所以需要“四次挥手”,是因为FIN释放连接报文与ACK确认接收报文是分别由第二次和第三次"握手"传输的。
为何建立连接时一起传输,释放连接时却要分开传输?
建立连接时,被动方服务器端结束CLOSED阶段进入“握手”阶段并不需要任何准备,可以直接返回SYN和ACK报文,开始建立连接。
释放连接时,被动方服务器,突然收到主动方客户端释放连接的请求时并不能立即释放连接,因为还有必要的数据需要处理,所以服务器先返回ACK确认收到报文,经过CLOSE-WAIT阶段准备好释放连接之后,才能返回FIN释放连接报文。
存在的意义
客户端如果出现故障,服务器不能一直等下去,白白浪费资源。服务器每收到一次客户端的请求后都会重新复位这个计时器,时间通常是设置为2小时,若两小时还没有收到客户端的任何数据,服务器就会发送一个探测报文段,以后每隔75秒发送一次。若一连发送10个探测报文仍然没反应,服务器就认为客户端出了故障,接着就关闭连接。
HTTP的方法
GET:获取资源
POST:传输实体主体,虽然GET也可以传输实体的主体,但一般使用POST,POST与GET相似,但POST的主要目的不是获取响应的主体。
PUT:传输文件,鉴于PUT自身不带检验机制,任何人都可以上传文件,存在安全性问题,因此一般网站不使用该方法。若配合web应用程序的检验机制,或架构设计采用REST标准的同类WEB网站,就可能会开放PUT方法。
HEAD:获取报文首部,用于确认URI的有效性及资源的更新日期时间等。
DELETE:删除文件,按请求URI删除指定的资源。是与PUT相反的方法。
OPTIONS:询问支持的方法,用来查询针对请求URI指定的资源支持的方法。
TRACE:追踪路径。
CONNECT:要求用隧道协议连接代理。要求在与代理服务器通信时建立隧道,实现隧道协议进行TCP通信。主要使用SSL(安全套接层)和TLS(传输层安全)协议把通信内容加密后经网络隧道传输。
HTTP长连接与短连接
设置HTTP短连接
在首部字段中设置Connection:close,则在一次请求/响应之后,就会关闭连接。
设置HTTP长连接,有过期时间
在首部字段中设置Connection:keep-alive 和Keep-Alive: timeout=60,表明连接建立之后,空闲时间超过60秒之后,就会失效。如果在空闲第58秒时,再次使用此连接,则连接仍然有效,使用完之后,重新计数,空闲60秒之后过期。
设置HTTP长连接,无过期时间
在首部字段中只设置Connection:keep-alive,表明连接永久有效。
实现原理
了解怎么设置之后,就开始用起来。然而,问题来了。在请求头中设置Connection:keep-alive,为什么连接空闲一段时间之后,还是断开了呢?这是因为connection字段只有服务端设置才有效。
HTTP操作是请求/响应成对出现的,即先有客户端发出请求,后有服务端处理请求。所以,一次HTTP操作的终点操作在服务端上,关闭也是由服务端发起的。
HTTP Connection的 close设置允许客户端或服务器中任何一方关闭底层的连接,双方都会要求在处理请求后关闭它们的TCP连接。例:
客户端设置Connection: Keep-Alive和Keep-Alive: timeout=60, 服务端设置Connection: Keep-Alive和Keep-Alive: timeout=5。则五秒后长连接会被断开。
注意
另外还有HTTP协议的keep-alive和TCP的keep-alive含义是有差别的。HTTP的keep-alive是为了维持连接,以便复用连接。通过使用keep-alive机制,可以减少tcp连接建立次数,也意味着可以减少TIME_WAIT状态连接,以此提高性能和提高httpd服务器的吞吐率(更少的tcp连接意味着更少的系统内核调用,socket的accept()和close()调用)。但是,长时间的tcp连接容易导致系统资源无效占用。配置不当的keep-alive,有时比重复利用连接带来的损失还更大。
而tcp keep-alive是TCP的一种检测TCP连接状况的机制,涉及到三个参数tcp_keepalive_time, tcp_keepalive_intvl, tcp_keepalive_probes。
当网络两端建立了TCP连接之后,闲置(双方没有任何数据流往来)了tcp_keepalive_time后,服务器内核就会尝试向客户端发送侦测包,来判断TCP连接状况(有可能客户端崩溃、强制关闭了应用、主机不可达等等)。如果没有收到对方的回答(ack包),则会在 tcp_keepalive_intvl后再次尝试发送侦测包,直到收到对方的ack。如果一直没有收到对方的ack,一共会尝试 tcp_keepalive_probes次。如果尝试tcp_keepalive_probes,依然没有收到对方的ack包,则会丢弃该TCP连接。TCP连接默认闲置时间是2小时,一般设置为30分钟足够了。
Http的报文详解
HTTP 报文的结构
请求报文
响应报文
HTTP 首部字段根据实际用途被分为以下 4 种类型。
通用首部字段(General Header Fields)
请求报文和响应报文两方都会使用的首部。
响应首部字段(Response Header Fields)
从服务器端向客户端返回响应报文时使用的首部。补充了响应的附加 内容,也会要求客户端附加额外的内容信息。
实体首部字段(Entity Header Fields)
针对请求报文和响应报文的实体部分使用的首部。补充了资源内容更 新时间等与实体有关的信息。
请求首部字段(Request Header Fields)
从客户端向服务器端发送请求报文时使用的首部。补充了请求的附加 内容、客户端信息、响应内容相关优先级等信息。