BZOJ 2154 Crash的数字表格 莫比乌斯反演
#include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<ctime> #include<cmath> #include<algorithm> #include<queue> #include<set> #include<map> #include<iomanip> using namespace std; #define LL long long #define up(i,j,n) for(int i=j;i<=n;i++) #define pii pair<LL,LL> #define db double #define eps 1e-4 #define FILE "dealing" int read(){ int x=0,f=1,ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch<='9'&&ch>='0'){x=(x<<1)+(x<<3)+ch-'0',ch=getchar();} return x*f; } const LL maxn=(LL)(1e7+2),inf=1000000000000000LL,limit=(LL)(1e7+2),mod=20101009; bool cmin(LL& a,LL b){return a>b?a=b,true:false;} bool cmax(LL& a,LL b){return a<b?a=b,true:false;} LL n,m; LL mu[maxn],b[maxn],prime[1000000],tail=0; LL sum(LL x,LL y){ LL c=x%2?(x+1)/2*x%mod:x/2*(x+1)%mod; LL d=y%2?(y+1)/2*y%mod:y/2*(y+1)%mod; return c*d%mod; } void getmu(){ mu[1]=1; up(i,2,n){ if(!b[i])prime[++tail]=i,mu[i]=-1; for(LL j=1;prime[j]*i<=n;j++){ b[i*prime[j]]=1; if(i%prime[j]){mu[i*prime[j]]=-mu[i];} else {mu[i*prime[j]]=0;break;} } } up(i,1,n)mu[i]=((LL)i*i%mod*mu[i])%mod; up(i,1,n)mu[i]=(mu[i]+mu[i-1])%mod; } LL f[1000][1000]; LL getf(LL x,LL y){ if(x<1000&&y<1000&&f[x][y])return f[x][y]; LL ans=0,pos; for(int i=1;i<=x;i++){ pos=min(x/(x/i),y/(y/i)); ans=(ans+(mu[pos]-mu[i-1]+mod)%mod*sum(x/i,y/i)%mod)%mod; i=pos; } if(x<1000&&y<1000)f[x][y]=ans; return ans; } int main(){ freopen(FILE".in","r",stdin); freopen(FILE".out","w",stdout); n=read(),m=read(); if(n>m)swap(n,m); getmu(); LL ans=0; up(i,1,n)ans=(ans+i*getf(n/i,m/i))%mod; printf("%lld\n",ans); //cout<<clock()<<endl; return 0; }