算法思想
转自: https://www.pdai.tech/md/interview/x-interview.html#72-%E7%AE%97%E6%B3%95%E6%80%9D%E6%83%B3
有哪些常见的算法思想?
分治算法: 分治算法的基本思想是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。求出子问题的解,就可得到原问题的解
动态规划算法:通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。和分治算法最大的差别:适用于动态规划算法求解的问题经过分解后得到的子问题往往不是相互独立的,而是下一个子阶段的求解是建立在上一个子阶段的解的基础上的。
贪心算法:保证每次操作都是局部最优的,并且最后得到的结果是全局最优的
二分法:比如重要的二分法,比如二分查找;二分查找也称折半查找(Binary Search),它是一种效率较高的查找方法。但是,折半查找要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列。
搜索算法:主要包含 BFS, DFS
Backtracking(回溯):属于 DFS, 回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法
有哪些常见的排序算法?
在综合复杂度及稳定性情况下,通常希尔, 快排和 归并需要重点掌握
冒泡排序(Bubble Sort):
它是一种较简单的排序算法。它会遍历若干次要排序的数列,每次遍历时,它都会从前往后依次的比较相邻两个数的大小;如果前者比后者大,则交换它们的位置。这样,一次遍历之后,最大的元素就在数列的末尾! 采用相同的方法再次遍历时,第二大的元素就被排列在最大元素之前。重复此操作,直到整个数列都有序为止
快速排序(Quick Sort):
插入排序(Insertion Sort):
Shell排序(Shell Sort):
选择排序(Selectioin Sort):
堆排序(Heap Sort):
堆排序是指利用堆这种数据结构所设计的一种排序算法。堆是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点
归并排序(Merge Sort):
将两个的有序数列合并成一个有序数列,我们称之为"归并"。归并排序(Merge Sort)就是利用归并思想对数列进行排序
桶排序(Bucket Sort):
桶排序(Bucket Sort)的原理很简单,将数组分到有限数量的桶子里。每个桶子再个别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排序)
基数排序(Radix Sort):
它的基本思想是: 将整数按位数切割成不同的数字,然后按每个位数分别比较。具体做法是: 将所有待比较数值统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列