机器学习中的Bias(偏差)和Variance(方差)
1.偏差
简单可以理解为真实数据和预测数据相差太大,真实的点构成的图形和拟合的图形相差很大
原来是这样的
我们使用线性模型以及多项式模型去拟合,就会发现,线性模型和预测的值和真实值相差很大,也就是偏差大,而多项式偏差小
2.方差
就是数据波动太大。
数据集是有随机性的,除了上一节使用的数据集外,我们还可能得到如右侧这样新的数据集
在新的数据集上当然也可以运用线性回归,或者多项式回归:
可见,较简单的线性回归变化不大,也就是说“方差”较小。而多项式回归对数据太敏感,变化太大,也就是说“方差”较大。
3.过拟合和欠拟合
文章转载:https://www.zhihu.com/question/27068705/answer/1689740820,仅做学习,如有侵权,联系删
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· winform 绘制太阳,地球,月球 运作规律
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人