pandas的str矢量化字符串处理
总结:
我们在建模时,总要做数据清洗,包括数值型和字符串型数据,下面就介绍16种str矢量化后处理字符串字段的函数
① cat函数:用于字符串的拼接
② contains:判断某个字符串是否包含给定字符
③ startswith/endswith:判断某个字符串是否以…开头/结尾
④ count:计算给定字符在字符串中出现的次数
⑤ get:获取指定位置的字符串
⑥ len:计算字符串长度
⑦ upper/lower:英文大小写转换
⑧ pad+side参数/center:在字符串的左边、右边或左右两边添加给定字符
⑨ repeat:重复字符串几次
⑩ slice_replace:使用给定的字符串,替换指定的位置的字符
⑪ replace:将指定位置的字符,替换为给定的字符串
⑫ replace:将指定位置的字符,替换为给定的字符串(接受正则表达式)
⑬ split方法+expand参数:搭配join方法功能很强大
⑭ strip/rstrip/lstrip:去除空白符、换行符
⑮ findall:利用正则表达式,去字符串中匹配,返回查找结果的列表
⑯ extract/extractall:接受正则表达式,抽取匹配的字符串(一定要加上括号)
数据集如下:
import pandas as pd df ={'姓名':[' 黄同学','黄至尊','黄老邪 ','陈大美','孙尚香'], '英文名':['Huang tong_xue','huang zhi_zun','Huang Lao_xie','Chen Da_mei','sun shang_xiang'], '性别':['男','women','men','女','男'], '身份证':['463895200003128433','429475199912122345','420934199110102311','431085200005230122','420953199509082345'], '身高':['mid:175_good','low:165_bad','low:159_bad','high:180_verygood','low:172_bad'], '家庭住址':['湖北广水','河南信阳','广西桂林','湖北孝感','广东广州'], '电话号码':['13434813546','19748672895','16728613064','14561586431','19384683910'], '收入':['1.1万','8.5千','0.9万','6.5千','2.0万']} df = pd.DataFrame(df) df
① cat函数:用于字符串的拼接
df["姓名"].str.cat(df["家庭住址"],sep='-'*3)
② contains:判断某个字符串是否包含给定字符
df["家庭住址"].str.contains("广")
③ startswith/endswith:判断某个字符串是否以…开头/结尾
# 第一个行的“ 黄伟”是以空格开头的 df["姓名"].str.startswith("黄") df["英文名"].str.endswith("e")
④ count:计算给定字符在字符串中出现的次数
df["电话号码"].str.count("3")
⑤ get:获取指定位置的字符串
df["姓名"].str.get(-1) df["身高"].str.split(":") df["身高"].str.split(":").str.get(0)
很奇怪,第一个的‘邪’字怎么显示不出来
⑥ len:计算字符串长度
df["性别"].str.len()
⑦ upper/lower:英文大小写转换
df["英文名"].str.upper() df["英文名"].str.lower()
⑧ pad+side参数/center:在字符串的左边、右边或左右两边添加给定字符
df["家庭住址"].str.pad(10,fillchar="*") # 相当于ljust() df["家庭住址"].str.pad(10,side="right",fillchar="*") # 相当于rjust() df["家庭住址"].str.center(10,fillchar="*")
⑨ repeat:重复字符串几次
df["性别"].str.repeat(3)
⑩ slice_replace:使用给定的字符串,替换指定的位置的字符
df["电话号码"].str.slice_replace(4,8,"*"*4)
⑪ replace:将指定位置的字符,替换为给定的字符串
df["身高"].str.replace(":","-")
⑫ replace:将指定位置的字符,替换为给定的字符串(接受正则表达式)
- replace中传入正则表达式,才叫好用;
- 先不要管下面这个案例有没有用,你只需要知道,使用正则做数据清洗多好用;
df["收入"].str.replace("\d+\.\d+","正则")
⑬ split方法+expand参数:搭配join方法功能很强大
# 普通用法 df["身高"].str.split(":") # split方法,搭配expand参数 df[["身高描述","final身高"]] = df["身高"].str.split(":",expand=True) df # split方法搭配join方法 df["身高"].str.split(":").str.join("?"*5)
⑭ strip/rstrip/lstrip:去除空白符、换行符
df["姓名"].str.len() df["姓名"] = df["姓名"].str.strip() df["姓名"].str.len()
⑮ findall:利用正则表达式,去字符串中匹配,返回查找结果的列表
- findall使用正则表达式,做数据清洗,真的很香!
df["身高"] df["身高"].str.findall("[a-zA-Z]+")
⑯ extract/extractall:接受正则表达式,抽取匹配的字符串(一定要加上括号)
df["身高"].str.extract("([a-zA-Z]+)") # extractall提取得到复合索引 df["身高"].str.extractall("([a-zA-Z]+)") # extract搭配expand参数 df["身高"].str.extract("([a-zA-Z]+).*?([a-zA-Z]+)",expand=True)
文章参考:https://mp.weixin.qq.com/s/wrNo9w6EZoQI-o6IDBJ0Zg
分类:
pandas
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· winform 绘制太阳,地球,月球 运作规律
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人