什么时候需要做数据标准化
哪些模型对标准化处理比较敏感?
机器学习中有部分模型是基于距离度量进行模型预测和分类的。由于距离对特征之间不同取值范围非常敏感,所以基于距离读量的模型是十分有必要做数据标准化处理的。
最典型基于距离度量的模型包括k近邻、kmeans聚类、感知机和SVM。另外,线性回归类的几个模型一般情况下也是需要做数据标准化处理的。决策树、基于决策树的Boosting和Bagging等集成学习模型对于特征取值大小并不敏感。所以这类模型一般不需要做数据标准化处理。另外有较多类别变量的数据也是不需要做标准化处理的。
结论
结论就是当数据特征取值范围或单位差异较大时,最好是做一下标准化处理。k近邻、kmeans聚类、感知机、SVM和线性回归类的模型,一般也是需要做数据标准化处理的。另外最好区分一下数据标准化和数据归一化
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· winform 绘制太阳,地球,月球 运作规律
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人