随笔 - 384  文章 - 0  评论 - 35  阅读 - 142万

sklearn.model_selection.StratifiedShuffleSplit 分层抽样(交叉验证法的一种)

sklearn.model_selection.StratifiedShuffleSplit 主要用于数据不均匀的时候,比如在医疗数据当中得癌症的人比不得癌症的人少很多,此交叉验证对象是StratifiedKFold和ShuffleSplit的合并,返回分层的随机折叠。折叠是通过保留每个类别的样品百分比来进行的

class sklearn.model_selection.StratifiedShuffleSplit(n_splits=10, *, test_size=None, train_size=None, random_state=None)

参数用法的K折交叉法基本一样,都是通过构建StratifiedShuffleSplit对象,然后再通过for循环和split函数进行拆分,返回的是对应的索引

具体用法可以参考官网:https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedShuffleSplit.html#sklearn.model_selection.StratifiedShuffleSplit.split

 

posted on   小小喽啰  阅读(1181)  评论(0编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
阅读排行:
· winform 绘制太阳,地球,月球 运作规律
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

点击右上角即可分享
微信分享提示