sklearn.linear_model.LogisticRegression逻辑回归参数详解
其实我们很少使用到sklearn里面的逻辑回归,因为它不能很好地处理样本均衡,我们一般使用statsmodels.api.Logit
逻辑回归参数
class sklearn.linear_model.LogisticRegression(penalty='l2', *, dual=False, tol=0.0001, C=1.0, fit_intercept=True,
intercept_scaling=1, class_weight=None, random_state=None, solver='lbfgs', max_iter=100, multi_class='auto', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None)
可选参数:
-
penalty:正则化方式,可选择‘l1’, ‘l2’, ‘elasticnet’, ‘none’,默认'l2'
-
dual:是否选择对偶,当n_samples> n_features时,首选dual = False
-
tol:算法停止的误差条件,默认是0.0001
-
C:正则强度的倒数;必须为正浮点数,较小的值指定更强的正则化,默认为1.0
-
fit_intercept:是否应将常量(也称为偏差或截距)添加到决策函数。默认是True。
-
intercept_scaling:不常用
-
class_weight:对类别进行加权,可以使用字典形式加权,输入‘balanced’代表权重为类别频率,默认是"None"。
-
random_state:选择随机种子,打乱样本时候指定。
-
solver:指定优化器类型,可选‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’, ‘saga’
具体的优化方法参考:机器学习中的优化算法!
-
max_iter:算法收敛的最大迭代次数,默认100。
-
multi_class:不常用。
-
verbose:对于liblinear和lbfgs,求解器将verbose设置为任何正数以表示详细程度。
-
warm_start:不常用。
-
n_jobs:使用内核数。
-
l1_ratio:弹性网络参数,其中0 <= l1_ratio <=1。仅当penalty=“ elasticnet”时使用。
返回标签:
- classes_:返回的类别标签
- coef_:系数
- intercept_:截距项
- n_iter_:所有类的迭代次数
正则化选择参数:penalty
LogisticRegression和LogisticRegressionCV(使用了交叉验证来选择正则化系数C)默认就带了正则化项。penalty参数可选择的值为"l1"和"l2".分别对应L1的正则化和L2的正则化,默认是L2的正则化。
在调参时如果我们主要的目的只是为了解决过拟合,一般penalty选择L2正则化就够了。但是如果选择L2正则化发现还是过拟合,即预测效果差的时候,就可以考虑L1正则化。另外,如果模型的特征非常多,我们希望一些不重要的特征系数归零,从而让模型系数稀疏化的话,也可以使用L1正则化。
penalty参数的选择会影响我们损失函数优化算法的选择。即参数solver的选择,如果是L2正则化,那么4种可选的算法{‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’}都可以选择。但是如果penalty是L1正则化的话,就只能选择‘liblinear’了。这是因为L1正则化的损失函数不是连续可导的,而{‘newton-cg’, ‘lbfgs’,‘sag’}这三种优化算法时都需要损失函数的一阶或者二阶连续导数。而‘liblinear’并没有这个依赖。
优化算法选择参数:solver
solver参数决定了我们对逻辑回归损失函数的优化方法,有4种算法可以选择,分别是:
- liblinear:使用了开源的liblinear库实现,内部使用了坐标轴下降法来迭代优化损失函数。
- lbfgs:拟牛顿法的一种,利用损失函数二阶导数矩阵即海森矩阵来迭代优化损失函数。
- newton-cg:也是牛顿法家族的一种,利用损失函数二阶导数矩阵即海森矩阵来迭代优化损失函数。
- sag:即随机平均梯度下降,是梯度下降法的变种,和普通梯度下降法的区别是每次迭代仅仅用一部分的样本来计算梯度,适合于样本数据多的时候,SAG是一种线性收敛算法,这个速度远比SGD快。关于SAG的理解,参考博文线性收敛的随机优化算法之 SAG、SVRG(随机梯度下降)
从上面的描述可以看出,newton-cg, lbfgs和sag这三种优化算法时都需要损失函数的一阶或者二阶连续导数,因此不能用于没有连续导数的L1正则化,只能用于L2正则化。而liblinear通吃L1正则化和L2正则化。
同时,sag每次仅仅使用了部分样本进行梯度迭代,所以当样本量少的时候不要选择它,而如果样本量非常大,比如大于10万,sag是第一选择。但是sag不能用于L1正则化,所以当你有大量的样本,又需要L1正则化的话就要自己做取舍了。要么通过对样本采样来降低样本量,要么回到L2正则化。
在sklearn的官方文档中,对于solver的使用说明如下:
Case | Solver |
---|---|
Small dataset or L1 penalty | “liblinear” |
Multinomial loss or large dataset | “lbfgs”, “sag” or “newton-cg” |
Very Large dataset | “sag” |
从上面的描述,大家可能觉得,既然newton-cg, lbfgs和sag这么多限制,如果不是大样本,我们选择liblinear不就行了嘛!错,因为liblinear也有自己的弱点!我们知道,逻辑回归有二元逻辑回归和多元逻辑回归。对于多元逻辑回归常见的有one-vs-rest(OvR)和many-vs-many(MvM)两种。而MvM一般比OvR分类相对准确一些。郁闷的是liblinear只支持OvR,不支持MvM,这样如果我们需要相对精确的多元逻辑回归时,就不能选择liblinear了。也意味着如果我们需要相对精确的多元逻辑回归不能使用L1正则化了。
总结而言,liblinear支持L1和L2,只支持OvR做多分类,“lbfgs”, “sag” “newton-cg”只支持L2,支持OvR和MvM做多分类
分类方式选择参数:multi_class
multi_class参数决定了我们分类方式的选择,有 ovr和multinomial两个值可以选择,默认是 ovr。
ovr即前面提到的one-vs-rest(OvR),而multinomial即前面提到的many-vs-many(MvM)。如果是二元逻辑回归,ovr和multinomial并没有任何区别,区别主要在多元逻辑回归上。
OvR的思想很简单,无论你是多少元逻辑回归,我们都可以看做二元逻辑回归。具体做法是,对于第K类的分类决策,我们把所有第K类的样本作为正例,除了第K类样本以外的所有样本都作为负例,然后在上面做二元逻辑回归,得到第K类的分类模型。其他类的分类模型获得以此类推。
而MvM则相对复杂,这里举MvM的特例one-vs-one(OvO)作讲解。如果模型有T类,我们每次在所有的T类样本里面选择两类样本出来,不妨记为T1类和T2类,把所有的输出为T1和T2的样本放在一起,把T1作为正例,T2作为负例,进行二元逻辑回归,得到模型参数。我们一共需要T(T-1)/2次分类。
从上面的描述可以看出OvR相对简单,但分类效果相对略差(这里指大多数样本分布情况,某些样本分布下OvR可能更好)。而MvM分类相对精确,但是分类速度没有OvR快。
如果选择了ovr,则4种损失函数的优化方法liblinear,newton-cg, lbfgs和sag都可以选择。但是如果选择了multinomial,则只能选择newton-cg, lbfgs和sag了。
类型权重参数: class_weight
class_weight参数用于标示分类模型中各种类型的权重,可以不输入,即不考虑权重,或者说所有类型的权重一样。如果选择输入的话,可以选择balanced让类库自己计算类型权重,或者我们自己输入各个类型的权重,比如对于0,1的二元模型,我们可以定义class_weight={0:0.9, 1:0.1},这样类型0的权重为90%,而类型1的权重为10%。
如果class_weight选择balanced,那么类库会根据训练样本量来计算权重。某种类型样本量越多,则权重越低,样本量越少,则权重越高。
sklearn的官方文档中,当class_weight为balanced时,类权重计算方法如下:
n_samples / (n_classes * np.bincount(y)),n_samples为样本数,n_classes为类别数量,np.bincount(y)会输出每个类的样本数,例如y=[1,0,0,1,1],则np.bincount(y)=[2,3]
那么class_weight有什么作用呢?在分类模型中,我们经常会遇到两类问题:
第一种是误分类的代价很高。比如对合法用户和非法用户进行分类,将非法用户分类为合法用户的代价很高,我们宁愿将合法用户分类为非法用户,这时可以人工再甄别,但是却不愿将非法用户分类为合法用户。这时,我们可以适当提高非法用户的权重。
第二种是样本是高度失衡的,比如我们有合法用户和非法用户的二元样本数据10000条,里面合法用户有9995条,非法用户只有5条,如果我们不考虑权重,则我们可以将所有的测试集都预测为合法用户,这样预测准确率理论上有99.95%,但是却没有任何意义。这时,我们可以选择balanced,让类库自动提高非法用户样本的权重。
提高了某种分类的权重,相比不考虑权重,会有更多的样本分类划分到高权重的类别,从而可以解决上面两类问题。
当然,对于第二种样本失衡的情况,我们还可以考虑用下一节讲到的样本权重参数: sample_weight,而不使用class_weight。sample_weight在下一节讲。
样本权重参数: sample_weight
上一节我们提到了样本不失衡的问题,由于样本不平衡,导致样本不是总体样本的无偏估计,从而可能导致我们的模型预测能力下降。遇到这种情况,我们可以通过调节样本权重来尝试解决这个问题。调节样本权重的方法有两种,第一种是在class_weight使用balanced。第二种是在调用fit函数时,通过sample_weight来自己调节每个样本权重。
在scikit-learn做逻辑回归时,如果上面两种方法都用到了,那么样本的真正权重是class_weight*sample_weight.
以上就是scikit-learn中逻辑回归类库调参的一个小结,还有些参数比如正则化参数C(交叉验证就是 Cs),迭代次数max_iter等,由于和其它的算法类库并没有特别不同,这里不多累述了。
代码展示
# -*- coding: utf-8 -*- """ Created on Tue Aug 11 10:12:48 2020 @author: Admin """ # 引入数据 from sklearn import datasets import numpy as np iris = datasets.load_iris() X = iris.data[:,[2,3]] y = iris.target print("Class labels:",np.unique(y)) #打印分类类别的种类 # 切分训练数据和测试数据 from sklearn.model_selection import train_test_split ## 30%测试数据,70%训练数据,stratify=y表示训练数据和测试数据具有相同的类别比例 X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=1,stratify=y) from sklearn.preprocessing import StandardScaler sc = StandardScaler() ## 估算训练数据中的mu和sigma sc.fit(X_train) ## 使用训练数据中的mu和sigma对数据进行标准化 X_train_std = sc.transform(X_train) X_test_std = sc.transform(X_test) ## 画出决策边界图(只有在2个特征才能画出来) import matplotlib.pyplot as plt %matplotlib inline from matplotlib.colors import ListedColormap def plot_decision_region(X,y,classifier,resolution=0.02): markers = ('s','x','o','^','v') colors = ('red','blue','lightgreen','gray','cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # plot the decision surface x1_min,x1_max = X[:,0].min()-1,X[:,0].max()+1 x2_min,x2_max = X[:,1].min()-1,X[:,1].max()+1 xx1,xx2 = np.meshgrid(np.arange(x1_min,x1_max,resolution), np.arange(x2_min,x2_max,resolution)) Z = classifier.predict(np.array([xx1.ravel(),xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1,xx2,Z,alpha=0.3,cmap=cmap) plt.xlim(xx1.min(),xx1.max()) plt.ylim(xx2.min(),xx2.max()) # plot class samples for idx,cl in enumerate(np.unique(y)): plt.scatter(x=X[y==cl,0], y = X[y==cl,1], alpha=0.8, c=colors[idx], marker = markers[idx], label=cl, edgecolors='black') #逻辑回归 由于标签有三类,特征有2个,因此截距和系数也有三对 from sklearn.linear_model import LogisticRegression lr = LogisticRegression(C=100.0,random_state=1) lr.fit(X_train_std,y_train) print("Class:",lr.classes_) print("Coef:",lr.coef_) print("intercept",lr.intercept_) print("n_iter",lr.n_iter_) ''' Class: [0 1 2] Coef: [[-5.61268224 -4.30718677] [ 2.40969576 -2.07325711] [ 9.51524418 5.39484899]] intercept [-5.8391281 -0.75730853 -9.21167569] n_iter [9] ''' plot_decision_region(X_train_std,y_train,classifier=lr,resolution=0.02) plt.xlabel('petal length [standardized]') plt.ylabel('petal width [standardized]') plt.legend(loc='upper left') plt.show() # 预测 ## 预测前三样本在各个类别的概率 print("前三样本在各个类别的预测概率为:\n",lr.predict_proba(X_test_std[:3,:])) print("\n============================") ## 获得前三个样本的分类标签 print("\n前三样本在各个类别的预测类别为:\n",lr.predict(X_test_std[:3,:])) print("\n============================") ''' 前三样本在各个类别的预测概率为: [[3.17983737e-08 1.44886616e-01 8.55113353e-01] [8.33962295e-01 1.66037705e-01 4.55557009e-12] [8.48762934e-01 1.51237066e-01 4.63166788e-13]] ============================ 前三样本在各个类别的预测类别为: [2 0 0] ============================ '''
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· winform 绘制太阳,地球,月球 运作规律
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人