随笔 - 384  文章 - 0  评论 - 35  阅读 - 142万

sklearn.svm 支持向量机

 

 

 

一、基本概念

支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机。SVM的的学习策略就是间隔最大化,可形式化为一个求解凸二次规划的问题,也等价于正则化的合页损失函数的最小化问题。SVM的的学习算法就是求解凸二次规划的最优化算法。支持向量机(Support Vector Machine:SVM)的目的是用训练数据集的间隔最大化找到一个最优分离超平面

 

二、模型原理

在给定的训练样本,找到一个超平面将不同类别的样本分开

 

1.超平面的公式如下:

其中,ω= (ω1,ω2...ωn) 为法向量,决定了超平面的方向,b是位移向,决定了超平面和原点之间的距离

 

2.样本到超平面的距离,样本空间中任意点x到超平面(记为(ω,b))的距离:

 

3.约束条件和支持向量机(support vector)

式(6.3)即为超平面将训练样本正确分类的约束条件。如下图所示,距离超平面最近的三个训练样本使得式(6.3)的等号成立,它们就是支持向量

 

4.间隔(margin):两个不同类别的支持向量分别到超平面的距离之和

 最优的划分超平面需要使得间隔 r 最大化

 

 

这就是支持向量机的基本型

下面的是(6.2)和(6.3)的推导

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 https://blog.csdn.net/shichensuyu/article/details/90678747

 

支持向量机的优势:

(1)在高维空间非常高效

(2)即使在数据维度比样本数量大的情况下仍然有效

(3)在决策函数(称为支持向量)中使用训练集的子集,因此它也是高效利用内存的

(4)通用性: 不同的核函数 核函数 与特定的决策函数一一对应.常见的 kernel 已经提供,也可以指定定制的内核

支持向量机缺点:

(1)如果特征数量比样本数量大得多,在选择核函数 核函数 时要避免过拟合, 而且正则化项是非常重要的

(2)支持向量机不直接提供概率估计,这些都是使用昂贵的五次交叉验算计算的

 

posted on   小小喽啰  阅读(292)  评论(0编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
阅读排行:
· winform 绘制太阳,地球,月球 运作规律
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

点击右上角即可分享
微信分享提示