随笔 - 384  文章 - 0  评论 - 35  阅读 - 142万

随笔分类 -  机器学习实战的自定义代码

决策树_信息熵
摘要:决策树优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。缺点:可能会产生过度匹配问题。适用数据类型:数值型和标称型 决策树的一般流程(1) 收集数据:可以使用任何方法。(2) 准备数据:树构造算法只适用于标称型数据,因此数值型数据必须离散化。(3) 分析数据:可以 阅读全文
posted @ 2020-09-08 10:55 小小喽啰 阅读(604) 评论(0) 推荐(0) 编辑
KNN_01
摘要:最简单的KNN分类:即是每个测试数据逐个去减训练集数据,使用的是欧氏距离,然后选取k个距离最小的数据作为邻居,看看这几个邻居属于那种类别最多,就属于哪种类别 k-近邻算法优点:精度高、对异常值不敏感、无数据输入假定。缺点:计算复杂度高、空间复杂度高。适用数据范围:数值型和标称型。 k-近邻算法的一般 阅读全文
posted @ 2020-09-08 10:48 小小喽啰 阅读(216) 评论(0) 推荐(0) 编辑

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

点击右上角即可分享
微信分享提示