RMQ算法

链接:https://www.cnblogs.com/zyf0163/p/4782133.html

以防链接失效,特此转载此文,如有冒犯望见谅

RMQ(ST算法)

 

RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列a,回答若干询问RMQ(A,i,j)(i, j<=n),返回数列a中下标在i,j之间的最小/大值。如果只有一次询问,那样只有一遍for就可以搞定,但是如果有许多次询问就无法在很快的时间处理出来。在这里介绍一个在线算法。所谓在线算法,是指用户每输入一个查询便马上处理一个查询。该算法一般用较长的时间做预处理,待信息充足以后便可以用较少的时间回答每个查询。ST(Sparse Table)算法是一个非常有名的在线处理RMQ问题的算法,它可以在O(nlogn)时间内进行预处理,然后在O(1)时间内回答每个查询。

步骤如下:

假设a数组为:

1, 3, 6, 7, 4, 2, 5

1.首先做预处理(以处理区间最小值为例)

设mn[i][j]表示从第i位开始连续2^j个数中的最小值。例如mn[2][1]为第2位数开始连续2个的数的最小值,即3, 6之间的最小值,即mn[2][1] = 3;

之后我们很容想到递推方程:

mn[i][j] = min(mn[i][j - 1], mn[i + (1 << j - 1)][j - 1])

附上伪代码:

1
2
3
for(int j = 0; j < 20; j ++)
    for(int i = 1; i + (1 << j) <= n + 1; i ++)
        mn[i][j] = min(mn[i][j - 1], mn[i + (1 << (j - 1))][j - 1]);

咦?为什么第二行是i + (1 << j) <= n + 1呢?因为mn[i][j]表示连续2^j个数,所以mn[i][j]所维护的区间为[i, i + (1 << j) - 1],所以在最后要+1,其实是为了方便,写成i + (1 << j) - 1 <= n感觉左边太长了,所以写在右边了。

那么为什么j要写在外围?如果写在里面的输出结果是这样的

我们会发现没有更新过,这是为什么呢? 因为我们在更新的时候是通过要通过2^(j - 1)的区间来更新2^j的区间,来看状态转移方程:

mn[i][j] = min(mn[i][j - 1], mn[i + (1 << j - 1)][j - 1])

我们发现如果j写在里面的话,在更新mn[i][j]的时候会发现mn[i +(1<<j - 1)][j - 1]还没有更新,所以才会出现这样的结果,正确结果如下:

 

咦?为什么还有0?我们来看伪代码:

1
2
3
for(int j = 0; j < 20; j ++)
    for(int i = 1; i + (1 << j) <= n + 1; i ++)
        mn[i][j] = min(mn[i][j - 1], mn[i + (1 << (j - 1))][j - 1]);

看第二行会发现,对于i + (1  << j) - 1超过n的,我们没有更新,如图中的mn[5][2],5 + 2^2 - 1 = 8 > 7所以没有更新,但这并不影响询问的结果。

2.查询

假设我们需要查询区间[l, r]中的最小值,令k = log2(r - l + 1); 则区间[l, r]的最小值RMQ[l,r] = min(mn[l][k], mn[r - (1 << k) + 1][k]);

那么为什么这样就可以保证为区间最值吗?

mn[l][k]维护的是[l, l + 2 ^ k - 1], mn[r - (1 << k) + 1][k]维护的是[r - 2 ^ k + 1, r] 。

那么我们只要保证r - 2 ^ k + 1 <= l + 2 ^ k - 1就能保证RMQ[l,r] = min(mn[l][k], mn[r - (1 << k) + 1][k]);

我们用分析法来证明下:

若r - 2 ^ k + 1 <= l + 2 ^ k - 1;

则r - l + 2 <= 2 ^ (k + 1);

又因为 k = log2(r - l + 1);

则r - l + 2 <= 2 *(r - l + 1);

则r - l >= 0;

显然可得。

由此得证。

我们来举个例子 l = 4, r = 6;

此时k = log2(r - l + 1) = log2(3) = 1;

所以RMQ[4, 6] = min(mn[4][1], mn[5][1]);

mn[4][1] = 4, mn[5][1] = 2;

所以RMQ[4, 6] = min(mn[4][1], mn[5][1]) = 2;

我们很容易看出来了答案是正确的。

附上总代码:(以结构体的形式写出):

 1 #include <cstdio>
 2 #include <algorithm>
 3 using namespace std;
 4 const int N = 100000 + 5;
 5 
 6 int a[N];
 7 
 8 int mn[N][25];
 9 
10 int n, q, l, r;
11 
12 struct RMQ{
13     int log2[N];
14     void init(){
15         for(int i = 0; i <= n; i ++)log2[i] = (i == 0 ? -1 : log2[i >> 1] + 1);
16         for(int j = 1; j < 20; j ++)
17             for(int i = 1; i + (1 << j) <= n + 1; i ++)
18                 mn[i][j] = min(mn[i][j - 1], mn[i + (1 << j - 1)][j - 1]);
19     }
20     int query(int ql, int qr){
21         int k = log2[qr - ql + 1];
22         return min(mn[ql][k], mn[qr - (1 << k) + 1][k]);
23     }
24 }rmq;
25 
26 void work(){
27     rmq.init();
28     scanf("%d", &q);
29     while(q --){
30         scanf("%d%d", &l, &r);
31         printf("%d\n", rmq.query(l, r));
32     }
33 }
34 
35 int main(){
36     while(scanf("%d", &n) == 1){
37         for(int i = 1; i <= n; i ++)scanf("%d", a + i), mn[i][0] = a[i];
38         work();
39     }
40     return 0;
41 }
posted @ 2018-04-10 22:28  cglong  阅读(206)  评论(0编辑  收藏  举报