(二)、SpringCloud整合ElasticSearch
Elasticsearch-Rest-Client
1. 通过 9300: TCP
-
spring-data-elasticsearch:transport-api.jar;
-
- springboot版本不同,ransport-api.jar不同,不能适配es版本
- 7.x已经不建议使用,8以后就要废弃
2. 通过 9200: HTTP
-
jestClient: 非官方,更新慢;
-
RestTemplate:模拟HTTP请求,ES很多操作需要自己封装,麻烦;
-
HttpClient:同上;
-
Elasticsearch-Rest-Client:官方RestClient,封装了ES操作,API层次分明,上手简单;
最终选择Elasticsearch-Rest-Client(elasticsearch-rest-high-level-client); https://www.elastic.co/guide/en/elasticsearch/client/java-rest/current/java-rest-high.html
创建 Elasticsearch 检索服务模块
gulimall-search
pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<artifactId>gulimall</artifactId>
<groupId>com.ylc.gulimall</groupId>
<version>0.0.1-SNAPSHOT</version>
<relativePath></relativePath>
</parent>
<artifactId>gulimall-search</artifactId>
<name>gulimall-search</name>
<description>Demo project for Spring Boot</description>
<properties>
<java.version>1.8</java.version>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
<spring-boot.version>2.3.7.RELEASE</spring-boot.version>
</properties>
<dependencies>
<dependency>
<groupId>com.ylc.gulimall</groupId>
<artifactId>gulimall-coupon</artifactId>
<version>0.0.1-SNAPSHOT</version>
<exclusions>
<exclusion>
<groupId>com.baomidou</groupId>
<artifactId>mybatis-plus-boot-starter</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-high-level-client</artifactId>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>
</project>
父pom
<!-- 这里的属性会被子模块继承 -->
<properties>
...
<elasticsearch.version>7.4.2</elasticsearch.version>
</properties>
<!-- 子模块继承父模块之后,提供作用:锁定版本 + 子模块不用再写 version -->
<dependencyManagement>
<dependencies>
...
<!-- 重写覆盖 spring-boot-dependencies 中的依赖版本 -->
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-high-level-client</artifactId>
<version>${elasticsearch.version}</version>
</dependency>
<dependency>
<groupId>org.elasticsearch</groupId>
<artifactId>elasticsearch</artifactId>
<version>${elasticsearch.version}</version>
</dependency>
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-client</artifactId>
<version>${elasticsearch.version}</version>
</dependency>
</dependencies>
</dependencyManagement>
YML
spring:
application:
name: gulimall-search
cloud:
nacos:
discovery:
server-addr: 127.0.0.1:8848
config:
server-addr: 127.0.0.1:8848
server:
port: 13000
主启动类
package com.ylc.gulimallsearch;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.boot.autoconfigure.jdbc.DataSourceAutoConfiguration;
import org.springframework.cloud.client.discovery.EnableDiscoveryClient;
@EnableDiscoveryClient
@SpringBootApplication(exclude = DataSourceAutoConfiguration.class)
public class GulimallSearchApplication {
public static void main(String[] args) {
SpringApplication.run(GulimallSearchApplication.class, args);
}
}
编写配置类
package com.ylc.gulimallsearch.config;
import org.apache.http.HttpHost;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestHighLevelClient;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
@Configuration
public class MallElasticSearchConfig {
/**
* 配置请求选项
* 参考:https://www.elastic.co/guide/en/elasticsearch/client/java-rest/current/java-rest-low-usage-requests.html#java-rest-low-usage-request-options
*/
public static final RequestOptions COMMON_OPTIONS;
static {
RequestOptions.Builder builder = RequestOptions.DEFAULT.toBuilder();
COMMON_OPTIONS = builder.build();
}
@Bean
public RestHighLevelClient esRestClient() {
return new RestHighLevelClient(
RestClient.builder(
new HttpHost("192.168.195.100", 9200, "http")));
}
}
编写测试类
package com.ylc.gulimallsearch;
import org.elasticsearch.client.RestHighLevelClient;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
@SpringBootTest
class GulimallSearchApplicationTests {
@Autowired
RestHighLevelClient client;
@Test
void contextLoads() {
System.out.println(client);
}
}
测试成功
测试存储数据
@Test
void indexData() throws IOException {
IndexRequest indexRequest = new IndexRequest("users");
indexRequest.id("1");
User user=new User();
user.setAge(22);
user.setName("ylc");
user.setGender("男");
String json= JSON.toJSONString(user);
indexRequest.source(json, XContentType.JSON);
//执行操作
IndexResponse index =client.index(indexRequest, MallElasticSearchConfig.COMMON_OPTIONS);
System.out.println(index);
}
@Data
public class User
{
private String name;
private String gender;
private Integer age;
}
查看结果
GET users/_search
整合复杂检索
参考: Search API
/**
* 检索地址中带有 mill 的人员年龄分布和平均薪资
*/
@Test
void searchData() throws IOException {
// 1. 创建检索请求
SearchRequest searchRequest = new SearchRequest();
// 指定索引
searchRequest.indices("bank");
// 指定 DSL 检索条件
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 1.1 构建检索条件 address 包含 mill
searchSourceBuilder.query(QueryBuilders.matchQuery("address", "mill"));
// 1.2 按照年龄值分布进行聚合
TermsAggregationBuilder ageAgg = AggregationBuilders.terms("ageAgg").field("age").size(10);
searchSourceBuilder.aggregation(ageAgg);
// 1.3 计算平均薪资
AvgAggregationBuilder balanceAvg = AggregationBuilders.avg("balanceAvg").field("balance");
searchSourceBuilder.aggregation(balanceAvg);
System.out.println("检索条件:" + searchSourceBuilder.toString());
searchRequest.source(searchSourceBuilder);
// 2. 执行检索, 获得响应
SearchResponse searchResponse = client.search(searchRequest, MallElasticSearchConfig.COMMON_OPTIONS);
// 3. 分析结果
// 3.1 获取所有查到的记录
SearchHits hits = searchResponse.getHits();
SearchHit[] searchHits = hits.getHits();
for (SearchHit hit : searchHits) {
// 数据字符串
String jsonString = hit.getSourceAsString();
System.out.println(jsonString);
// 可以通过 json 转换成实体类对象
// Account account = JSON.parseObject(jsonString, Account.class);
}
// 3.2 获取检索的分析信息(聚合数据等)
Aggregations aggregations = searchResponse.getAggregations();
// for (Aggregation aggregation : aggregations.asList()) {
// System.out.println("当前聚合名:" + aggregation.getName());
// }
Terms ageAgg1 = aggregations.get("ageAgg");
for (Terms.Bucket bucket : ageAgg1.getBuckets()) {
String keyAsString = bucket.getKeyAsString();
System.out.println("年龄:" + keyAsString + " 岁的有 " + bucket.getDocCount() + " 人");
}
Avg balanceAvg1 = aggregations.get("balanceAvg");
System.out.println("平均薪资: " + balanceAvg1.getValue());
}
检索业务
只有上架的商品存储到Elasticsearch中才能被检索
1. 需要保存 sku 信息
- 当搜索商品名时,查询的是 sku 的标题 sku_title;
- 可能通过 sku 的标题、销量、价格区间检索
2. 需要保存品牌、分类等信息
- 点击分类,检索分类下的所有信息
- 点击品牌,检索品牌下的商品信息
3. 需要保存 spu 信息
- 选择规格,检索共有这些规格的商品
方案1-空间换时间
{
skuId:1
spuId:11
skyTitile:华为xx
price:999
saleCount:99
attrs:[
{尺寸:5存},
{CPU:高通945},
{分辨率:全高清}
]
}
# 缺点:会产生冗余字段,对于相同类型的商品,attrs 属性字段会重复,空间占用大
# 好处:方便检索
方案2-时间换空间
sku索引
{
skuId:1
spuId:11
}
attr索引
{
spuId:11
attrs:[
{尺寸:5寸},
{CPU:高通945},
{分辨率:全高清}
]
}
# 缺点:选择公共属性attr时,会检索当前属性的所有商品分类,然后再查询当前商品分类的所有可能属性;
# 导致耗时长。
# 好处:空间利用率高
最终结构
PUT product
{
"mappings": {
"properties": {
"skuId": { "type": "long" },
"spuId": { "type": "keyword" },
"skuTitle": {
"type": "text",
"analyzer": "ik_smart"
},
"skuPrice": { "type": "keyword" },
"skuImg": {
"type": "keyword",
"index": false,
"doc_values": false
},
"saleCount":{ "type":"long" },
"hasStock": { "type": "boolean" },
"hotScore": { "type": "long" },
"brandId": { "type": "long" },
"catalogId": { "type": "long" },
"brandName": {
"type": "keyword",
"index": false,
"doc_values": false
},
"brandImg":{
"type": "keyword",
"index": false,
"doc_values": false
},
"catalogName": {
"type": "keyword",
"index": false,
"doc_values": false
},
"attrs": {
"type": "nested",
"properties": {
"attrId": {"type": "long" },
"attrName": {
"type": "keyword",
"index": false,
"doc_values": false
},
"attrValue": { "type": "keyword" }
}
}
}
}
}
结构说明
"mappings": {
"properties": {
"skuId": { "type": "long" },
"spuId": { "type": "keyword" }, # 精确检索,不分词
"skuTitle": {
"type": "text", # 全文检索
"analyzer": "ik_smart" # 分词器
},
"skuPrice": { "type": "keyword" },
"skuImg": {
"type": "keyword",
"index": false, # false 不可被检索
"doc_values": false # false 不可被聚合
},
"saleCount":{ "type":"long" }, # 商品销量
"hasStock": { "type": "boolean" }, # 商品是否有库存
"hotScore": { "type": "long" }, # 商品热度评分
"brandId": { "type": "long" }, # 品牌id
"catalogId": { "type": "long" }, # 分类id
"brandName": { # 品牌名,只用来查看,不用来检索和聚合
"type": "keyword",
"index": false,
"doc_values": false
},
"brandImg":{ # 品牌图片,只用来查看,不用来检索和聚合
"type": "keyword",
"index": false,
"doc_values": false
},
"catalogName": { # 分类名,只用来查看,不用来检索和聚合
"type": "keyword",
"index": false,
"doc_values": false
},
"attrs": { # 属性对象
"type": "nested", # 嵌入式,内部属性
"properties": {
"attrId": {"type": "long" },
"attrName": { # 属性名
"type": "keyword",
"index": false,
"doc_values": false
},
"attrValue": { "type": "keyword" } # 属性值
}
}
}
}
关于 nested 类型
- Object 数据类型的数组会被扁平化处理为一个简单的键与值的列表,即对象的相同属性会放到同一个数组中,在检索时会出现错误。参考官网:How arrays of objects are flattened
- 对于 Object 类型的数组,要使用 nested 字段类型。参考官网:Using nested fields for arrays of objects
对于这种情况于是就会用到nested类型
商品上架及ElasticSearch检索
利用es检索商品信息,被检索的只能是已经上架的商品,因此商品需要先上架,上架前需要检查商品的库存信息,没有库存不能够上架,符合要求的拿到商品id再上架,最后再把上架的商品插入es的索引结构中,才能够被检索到。
根据es事先建立好的商品信息索引结构在原有SkuInfoEntity
类中还多了一些字段,还有一些字段名称不相同,因此在SkuInfoEntity
类的基础上建立了SkuesModel
类
获取该商品spuId所对应的skuId信息
- 首先发送远程调用查看库存模块是否还有库存
- 根据skuid去库存表
wms_ware_sku
查询,返回商品skuId和是否有库存信息的bool值,用Map<Long, Boolean>接收 - 根据商品的skuId集合,获取到对应的Sku实体信息
SkuInfoEntity
,把SkuInfoEntity
复制到SkuesModel
集合,根据skuId查询到品牌的相关信息后赋值,并把不相同无法复制的字段手动设置值。 - 同时获取商品的属性集合,并赋值给SkuesModel.attr
- 根据skuid去库存表
- 最后将封装好的
SkuesModel
数据发送给es保存- 远程调用es检索模块,把
SkuesModel
数据批量保存到es索引中 - 根据返回结果,成功再更新商品的上架状态,事务保持统一
- 远程调用es检索模块,把