Android消息机制分析
Android消息机制分析
什么是Handler
先看一段报错:
这个是子线程更新UI报错的log。
原因是android的view不是线程安全的
在android中可以通过Handler,在子线程中发送消息给主线程来更新UI
1.Handler的简单用法
class MainActivity : AppCompatActivity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)
val msg = Message()
msg.what = 1
handler.sendMessage(msg)
}
private val handler = @SuppressLint("HandlerLeak")
object:Handler(Looper.getMainLooper()) {
override fun handleMessage(msg: Message) {
super.handleMessage(msg)
when (msg.what) {
1 -> Log.d("TAG", "发送消息")
}
}
}
}
2.消息机制流程分析
2.1 Handler,Looper,MessageQueue的创建过程
2.1.1 Handler的构造方法
首先看下Handler的构造方法,有两个构造方法已经废弃掉了。
最后一个构造方法里面会传一个looper,同时获取到looper对应的MessageQueue,还有Callback参数。
不传looper的话,就需要通过Looper.myLooper()去拿looper对象。
@Deprecated
public Handler() {
this(null, false);
}
@Deprecated
public Handler(@Nullable Callback callback) {
this(callback, false);
}
public Handler(@NonNull Looper looper) {
this(looper, null, false);
}
public Handler(@Nullable Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {
final Class<? extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread " + Thread.currentThread()
+ " that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
@UnsupportedAppUsage
public Handler(@NonNull Looper looper, @Nullable Callback callback, boolean async) {
mLooper = looper;
mQueue = looper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
2.1.2 Looper的相关方法
首先通过looper.prepare()方法,初始化looper,
同时通过static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
存储到ThreadLocal的ThreadLocalMap中,looper创建时会同步创建一个MessageQueue,同时获取到当前线程。
public static void prepare() {
prepare(true);
}
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
Thread,ThreadLocal,looper之间的关系是什么,
ThreadLocal可以认为是为线程存储数据准备的,也就是一个线程对应一个looper,线程可以通过ThreadLocal拿到其对应的looper。
线程如何通过ThreadLocal拿到其对应的looper呢。
首先看Looper的prepare方法中,
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
sThreadLocal.set(new Looper(quitAllowed));
这一步,进去仔细看下
也就是ThreadLocal的set方法
public void set(T value) {//value就是对应的new Looper(quitAllowed)
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);//1.先通过getMap方法,拿到ThreadLocalMap
if (map != null)
map.set(this, value); //2.将ThreadLocal和new Looper()进行绑定
else
createMap(t, value); //3.map为null,创建一个map,同时绑定
}
ThreadLocalMap getMap(Thread t) {//getMap方法
return t.threadLocals;
}
void createMap(Thread t, T firstValue) {//创建map的操作
//创建ThreadLocalMap对象,关联ThreadLocal和Looper。然后将ThreadLocalMap赋值给Thread.threadLocals变量
t.threadLocals = new ThreadLocalMap(this, firstValue);
}
ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {//ThreadLocal构造函数
table = new Entry[INITIAL_CAPACITY];
int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
table[i] = new Entry(firstKey, firstValue);
size = 1;
setThreshold(INITIAL_CAPACITY);
}
ThreadLocal内部的Entery的数据结构:
static class ThreadLocalMap {
/**
* The entries in this hash map extend WeakReference, using
* its main ref field as the key (which is always a
* ThreadLocal object). Note that null keys (i.e. entry.get()
* == null) mean that the key is no longer referenced, so the
* entry can be expunged from table. Such entries are referred to
* as "stale entries" in the code that follows.
*/
static class Entry extends WeakReference<ThreadLocal<?>> {
/** The value associated with this ThreadLocal. */
Object value;
Entry(ThreadLocal<?> k, Object v) {
super(k);
value = v;
}
}
//....
}
所以ThreadLocal内部包含了一个ThreadLocalMap,将当前TheadLocal和new Looper()进行了一个绑定,构造出一个ThreadLocal对象,ThreadLocal为key,looper是value.同时将这个ThreadLocal对象赋值给Thread的threadLocals变量
简单说就是如下一段代码:
Thread().threadLocals = new ThreadLocalMap(Looper().sThreadLocal /*as Key*/, looper /*as Value*/);
用Looper中的sThreadLocal变量作为key,looper作为value构造一个ThreadLocalMap,赋值给Thread的threadLocals变量。
这样线程和looper就对应起来,在Thread中使用Handler的流程首先是
通过Looper.prepare()方法,将Looper.sThreadLocal和Looper以及当前Tread做一个绑定。
这样后面就可以在Thread中通过Looper.myLooper()方法直接拿到对应的looper
获取looper的方法:
public static @Nullable Looper myLooper() {
return sThreadLocal.get();
}
然后是ThreadLocal的get方法
public T get() {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null) {
ThreadLocalMap.Entry e = map.getEntry(this);
if (e != null) {
@SuppressWarnings("unchecked")
T result = (T)e.value;
return result;
}
}
return setInitialValue();
}
针对主线程创建的looper有如下方法:
可以通过getMainLooper()拿到主线程的looper
@Deprecated
public static void prepareMainLooper() {
prepare(false);
synchronized (Looper.class) {
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();
}
}
/**
* Returns the application's main looper, which lives in the main thread of the application.
*/
public static Looper getMainLooper() {
synchronized (Looper.class) {
return sMainLooper;
}
}
以上可以说都是准备工作:
明确了,Handler,Looper,MessageQueue,ThreadLocal,Thread之间的关系,这里简单总结一下:
1.首先是Thread和ThreadLocal以及Looper和MessageQueue之间的关系:
->Looper.prepare() //先准备好Looper
Looper looper = new Looper(); 创建looper对象
looper.queue = new MessageQueue(); 创建MessageQueue对象并赋值给looper的queue变量
以looper的sThreadLocal变量为key,looper为value创建ThreadLocal对象赋值给Thread的sThreadLocal变量。
Thread().sThreadLocal = new ThreadLocal(looper.sThreadLocal, looper)
2.Handler创建的时候会通过Looper.myLooper()方法拿到当前Thread对应的Looper,以及其MessageQueue.然后通过sendMessage等方法将消息发送出去。所以对于一个子线程里面如果要使用Handler就必须先通过Looper.prepare()方法创建Looper,否则Handler没有looper可以用。
public Handler(@Nullable Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {
final Class<? extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread " + Thread.currentThread()
+ " that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
2.2 消息发送过程分析
2.2.1 Handler部分发送消息的流程
Handler通过sendMessage等方法发送消息时流程为:
sendMessage->sendMessageDelayed->sendMessageAtTime->enqueueMessage
最终通过MessageQueue#enqueueMessage()方法,将msg加入到MessageQueue中。
public final boolean sendMessage(@NonNull Message msg) {
return sendMessageDelayed(msg, 0);
}
public final boolean sendMessageDelayed(@NonNull Message msg, long delayMillis) {
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
public boolean sendMessageAtTime(@NonNull Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
private boolean enqueueMessage(@NonNull MessageQueue queue, @NonNull Message msg,
long uptimeMillis) {
msg.target = this;
msg.workSourceUid = ThreadLocalWorkSource.getUid();
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
2.2.2 MessageQueue消息入队过程分析
Handler发送的Message最终通过MessageQueue#enqueueMessage()加入到MessageQueue中。
下面分析一下消息入队的过程:
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {//1.先判断当前消息是否有对应的Handler,msg.target就是其对应的Handler
throw new IllegalArgumentException("Message must have a target.");
}
synchronized (this) {//2.加锁,线程安全
if (msg.isInUse()) {//3.合法性判断
throw new IllegalStateException(msg + " This message is already in use.");
}
if (mQuitting) {//4.合法性判断
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();//回收message
return false;
}
msg.markInUse();//5.标记使用,方便做合法性判断
msg.when = when;//6.待发送消息的时间
Message p = mMessages;
boolean needWake;//7.是否执行唤醒操作
if (p == null || when == 0 || when < p.when) {//8.如果当前没有消息,或者待发送的消息没有延迟,或者待发送的消息时间比当前消息的时间要早,就将当前消息插入到头结点
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;//IdleHandler执行完毕,mBlocked才为true
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
//当IdleHandler执行完毕,并且当前消息是一个异步消息,才会唤醒消息轮训线程
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {//遍历链表
prev = p;
p = p.next;
if (p == null || when < p.when) {//没有下一条消息或者待发送消息时间早于下一条消息发送时间,退出循环。
break;
}
if (needWake && p.isAsynchronous()) {//如果有异步消息不唤醒轮询线程
needWake = false;
}
}
//消息插入链表,当前消息的下一个消息为空或者一个发送时间更晚的消息
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);//唤醒消息轮询线程,转到native方法执行。
}
}
return true;
}
2.3 消息处理过程分析
消息处理从Looper的loop()方法开始,方法太长了,重点关注for循环里面的
queue.next()
和msg.target.dispatchMessage(msg);
,前者是从MessageQueue里取出消息,后者则是调用handler的dispatchMessage()方法
Looper的loop()方法分析:
public static void loop() {
final Looper me = myLooper();//1.拿到looper
if (me == null) {//2.判空处理
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
me.mInLoop = true;
final MessageQueue queue = me.mQueue;
boolean slowDeliveryDetected = false;
for (;;) {//3.for循环遍历
Message msg = queue.next(); // might block 4.从队列里面拿消息
if (msg == null) {//5.消息判空处理
// No message indicates that the message queue is quitting.
return;
}
//...
try {
//...
msg.target.dispatchMessage(msg);//6.消息发送给Handler处理
//...
} catch (Exception exception) {
if (observer != null) {
observer.dispatchingThrewException(token, msg, exception);
}
throw exception;
} finally {
//...
}
//...
msg.recycleUnchecked();
}
}
MessageQueue的next()方法分析
next方法本身也是一个for循环,而且是一个死循环。
Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr;
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
// Process the quit message now that all pending messages have been handled.
if (mQuitting) {
dispose();
return null;
}
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
}
}
2.4 nativePollOnce流程分析
看不到native层源码,暂不分析
3 Handler常见问题
3.1 Handler造成内存泄漏
这篇文章写的不错,引用这篇文章里的分析结论
Handler导致内存泄漏一般发生在发送延迟消息的时候,当Activity关闭之后,延迟消息还没发出,那么主线程中的MessageQueue就会持有这个消息的引用,而这个消息是持有Handler的引用,而handler作为匿名内部类持有了Activity的引用,所以就有了以下的一条引用链。
主线程 —> threadlocal —> Looper —> MessageQueue —> Message —> Handler —> Activity
其根本原因是因为这条引用链的头头,也就是主线程,是不会被回收的,所以导致Activity无法被回收,出现内存泄漏,其中Handler只能算是导火索。
而我们平时用到的子线程通过Handler更新UI,其原因是因为运行中的子线程不会被回收,而子线程持有了Actiivty的引用(不然也无法调用Activity的Handler),所以就导致内存泄漏了,但是这个情况的主要原因还是在于子线程本身。
所以综合两种情况,在发生内存泄漏的情况中,Handler都不能算是罪魁祸首,罪魁祸首(根本原因)都是他们的头头——线程。