(1)以下matlab代码实现了高斯混合模型:
function [Alpha, Mu, Sigma] = GMM_EM(Data, Alpha0, Mu0, Sigma0)
%% EM 迭代停止条件
loglik_threshold = 1e-10;
%% 初始化参数
[dim, N] = size(Data);
M = size(Mu0,2);
loglik_old = -realmax;
nbStep = 0;
Mu = Mu0;
Sigma = Sigma0;
Alpha = Alpha0;
Epsilon = 0.0001;
while (nbStep < 1200)
nbStep = nbStep+1;
%% E-步骤 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:M
% PDF of each point
Pxi(:,i) = GaussPDF(Data, Mu(:,i), Sigma(:,:,i));
end
% 计算后验概率 beta(i|x)
Pix_tmp = repmat(Alpha,[N 1]).*Pxi;
Pix = Pix_tmp ./ (repmat(sum(Pix_tmp,2),[1 M])+realmin);
Beta = sum(Pix);
%% M-步骤 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:M
% 更新权值
Alpha(i) = Beta(i) / N;
% 更新均值
Mu(:,i) = Data*Pix(:,i) / Beta(i);
% 更新方差
Data_tmp1 = Data - repmat(Mu(:,i),1,N);
Sigma(:,:,i) = (repmat(Pix(:,i)',dim, 1) .* Data_tmp1*Data_tmp1') / Beta(i);
%% Add a tiny variance to avoid numerical instability
Sigma(:,:,i) = Sigma(:,:,i) + 1E-5.*diag(ones(dim,1));
end
% %% Stopping criterion 1 %%%%%%%%%%%%%%%%%%%%
% for i=1:M
%Compute the new probability p(x|i)
% Pxi(:,i) = GaussPDF(Data, Mu(:,i), Sigma(i));
% end
%Compute the log likelihood
% F = Pxi*Alpha';
% F(find(F<realmin)) = realmin;
% loglik = mean(log(F));
%Stop the process depending on the increase of the log likelihood
% if abs((loglik/loglik_old)-1) < loglik_threshold
% break;
% end
% loglik_old = loglik;
%% Stopping criterion 2 %%%%%%%%%%%%%%%%%%%%
v = [sum(abs(Mu - Mu0)), abs(Alpha - Alpha0)];
s = abs(Sigma-Sigma0);
v2 = 0;
for i=1:M
v2 = v2 + det(s(:,:,i));
end
if ((sum(v) + v2) < Epsilon)
break;
end
Mu0 = Mu;
Sigma0 = Sigma;
Alpha0 = Alpha;
end
nbStep
(2)以下代码根据高斯分布函数计算每组数据的概率密度,被GMM_EM函数所调用
function prob = GaussPDF(Data, Mu, Sigma)
%
% 根据高斯分布函数计算每组数据的概率密度 Probability Density Function (PDF)
% 输入 -----------------------------------------------------------------
% o Data: D x N ,N个D维数据
% o Mu: D x 1 ,M个Gauss模型的中心初始值
% o Sigma: M x M ,每个Gauss模型的方差(假设每个方差矩阵都是对角阵,
% 即一个数和单位矩阵的乘积)
% Outputs ----------------------------------------------------------------
% o prob: 1 x N array representing the probabilities for the
% N datapoints.
[dim,N] = size(Data);
Data = Data' - repmat(Mu',N,1);
prob = sum((Data*inv(Sigma)).*Data, 2);
prob = exp(-0.5*prob) / sqrt((2*pi)^dim * (abs(det(Sigma))+realmin));
(3)以下是演示代码demo1.m
% 高斯混合模型参数估计示例 (基于 EM 算法)
% 2010 年 11 月 9 日
[data, mu, var, weight] = CreateSample(M, dim, N); // 生成测试数据
[Alpha, Mu, Sigma] = GMM_EM(Data, Priors, Mu, Sigma)
(4)以下是测试数据生成函数,为demo1.m所调用:
function [data, mu, var, weight] = CreateSample(M, dim, N)
% 生成实验样本集,由M组正态分布的数据构成
% % GMM模型的原理就是仅根据数据估计参数:每组正态分布的均值、方差,
% 以及每个正态分布函数在GMM的权重alpha。
% 在本函数中,这些参数均为随机生成,
%
% 输入
% M : 高斯函数个数
% dim : 数据维数
% N : 数据总个数
% 返回值
% data : dim-by-N, 每列为一个数据
% miu : dim-by-M, 每组样本的均值,由本函数随机生成
% var : 1-by-M, 均方差,由本函数随机生成
% weight: 1-by-M, 每组的权值,由本函数随机生成
% ----------------------------------------------------
%
% 随机生成不同组的方差、均值及权值
weight = rand(1,M);
weight = weight / norm(weight, 1); % 归一化,保证总合为1
var = double(mod(int16(rand(1,M)*100),10) + 1); % 均方差,取1~10之间,采用对角矩阵
mu = double(round(randn(dim,M)*100)); % 均值,可以有负数
for(i = 1: M)
if (i ~= M)
n(i) = floor(N*weight(i));
else
n(i) = N - sum(n);
end
end
% 以标准高斯分布生成样本值,并平移到各组相应均值和方差
start = 0;
for (i=1:M)
X = randn(dim, n(i));
X = X.* var(i) + repmat(mu(:,i),1,n(i));
data(:,(start+1):start+n(i)) = X;
start = start + n(i);
end
save('d:\data.mat', 'data');
出处:http://wolfsky2002.blog.163.com/blog/static/10343152010112610221540/