飞夺泸定桥

我心飞扬

  博客园 :: 首页 :: 博问 :: 闪存 :: 新随笔 :: 联系 :: 订阅 订阅 :: 管理 ::

直方图均衡化是灰度变换的一个重要应用,它高效且易于实现,广泛应用于图像增强处理中。图像的像素灰度变化是随机的,直方图的图形高低不齐,直方图均衡化就是用一定的算法使直方图大致平和。

均衡化处理后的图象只能是近似均匀分布。均衡化图象的动态范围扩大了,但其本质是扩大了量化间隔,而量化级别反而减少了,因此,原来灰度不同的象素经处理后可能变的相同,形成了一片的相同灰度的区域,各区域之间有明显的边界,从而出现了伪轮廓。

如果原始图像对比度本来就很高,如果再均衡化则灰度调和,对比度降低。在泛白缓和的图像中,均衡化会合并一些象素灰度,从而增大对比度。均衡化后的图片如果再对其均衡化,则图像不会有任何变化。

灰度直方图均衡化的算法,简单地说,就是把直方图的每个灰度级进行归一化处理,求每种灰度的累积分布,得到一个映射的灰度映射表,然后根据相应的灰度值来修正原图中的每个像素。

经典的直方图均衡化算法可能存在以下一些不足:

  1. 输出图像的实际灰度变化范围很难达到图像格式所允许的最大灰度变化范围。          
  2. 输出图像的灰度分布直方图虽然接近均匀分布, 但其值与理想值1/n仍有可能存在较大的差异, 并非是最佳值。          
  3. 输出图像的灰度级有可能被过多地合并。由于灰度的吞噬也易造成图像信息的丢失。         

为此人们提出了许多改进的直方图均衡算法,详细内容请参阅本文末尾提供的参考资料。

公式

要写论文的同学可能需要用数学的方式来描述,下面我把前面讲的内容概括成公式,以供参考。

概率密度函数(PDF)

为了计算方便,我们需要将直方图归一化,即把灰度范围由0~255变为0~1。归一化后的直方图其实就是一个概率密度函数(PDF,probability density function),均衡化就是令概率密度为1。

我们用Pr(r)来表示原图像的PDF,用Ps(s)表示均衡化之后的PDF,r、s分别代表均衡化前后的灰度值,r,s∈[0,1]。根据概率论的知识,可得出:

公式中,T(rk)来表示原图像的第k个灰度级的转换函数。∑表示总和。∑nj/N表示0~j个灰度级的像素数量总和与像素总数的比值,也就是前面讲过的百分位(当前色阶与前面色阶的所有像素数量÷总像素数量)。∑Pr(rk)表示第0~k的灰度级出现概率累积相加。因为s是归一化的数值(s∈[0,1]),要转换为0~255的颜色值,需要再乘上255,即S=∑Pr(rk)*255。

这个转换公式也被称为图像的累积分布函数

(CDF,cumulative distribution function)。

彩色算法

彩色的直方图均衡化其实就是对图像某个或多个颜色通道进行灰度直方图均衡化运算,常见的有以下几种方法:

统计所有RGB颜色通道的直方图的数据并做均衡化运算,然后根据均衡化所得的映射表分别替换R、G、B通道颜色值。
分别统计R、G、B颜色通道的直方图的数据并做均衡化运算,然后根据R、G、B的映射表分别替换R、G、B通道颜色值。
用亮度公式或求RGB的平均值的方式计算亮度通道,然后统计亮度通道的直方图的数据并做均衡化运算,然后根据映射表分别替换R、G、B通道颜色值。

posted on 2011-06-05 23:07  飞夺泸定桥  阅读(21486)  评论(0编辑  收藏  举报