一个公式看懂:为什么DUBBO线程池会打满

转载:https://blog.csdn.net/lianggzone/article/details/115986471?spm=1001.2101.3001.6650.1&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-1-115986471-blog-121764780.235%5Ev27%5Epc_relevant_recovery_v2&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-1-115986471-blog-121764780.235%5Ev27%5Epc_relevant_recovery_v2&utm_relevant_index=2

0 文章概述

大家可能都遇到过DUBBO线程池打满这个问题,刚开始遇到这个问题可能会比较慌,常见方案可能就是重启服务,但也不知道重启是否可以解决。我认为重启不仅不能解决问题,甚至有可能加剧问题,这是为什么呢?本文我们就一起分析DUBBO线程池打满这个问题。

 

1 基础知识

1.1 DUBBO线程模型

1.1.1 基本概念

DUBBO底层网络通信采用Netty框架,我们编写一个Netty服务端进行观察:

  1.  
    public class NettyServer {
  2.  
        public static void main(String[] args) throws Exception {
  3.  
            EventLoopGroup bossGroup = new NioEventLoopGroup(1);
  4.  
            EventLoopGroup workerGroup = new NioEventLoopGroup(8);
  5.  
            try {
  6.  
                ServerBootstrap bootstrap = new ServerBootstrap();
  7.  
                bootstrap.group(bossGroup, workerGroup)
  8.  
                .channel(NioServerSocketChannel.class)
  9.  
                .option(ChannelOption.SO_BACKLOG, 128)
  10.  
                .childOption(ChannelOption.SO_KEEPALIVE, true)
  11.  
                .childHandler(new ChannelInitializer<SocketChannel>() {
  12.  
                    @Override
  13.  
                    protected void initChannel(SocketChannel ch) throws Exception {
  14.  
                        ch.pipeline().addLast(new NettyServerHandler());
  15.  
                    }
  16.  
                });
  17.  
                ChannelFuture channelFuture = bootstrap.bind(7777).sync();
  18.  
                System.out.println("服务端准备就绪");
  19.  
                channelFuture.channel().closeFuture().sync();
  20.  
            } catch (Exception ex) {
  21.  
                System.out.println(ex.getMessage());
  22.  
            } finally {
  23.  
                bossGroup.shutdownGracefully();
  24.  
                workerGroup.shutdownGracefully();
  25.  
            }
  26.  
        }
  27.  
    }

BossGroup线程组只有一个线程处理客户端连接请求,连接完成后将完成三次握手的SocketChannel连接分发给WorkerGroup处理读写请求,这两个线程组被称为「IO线程」。

我们再引出「业务线程」这个概念。服务生产者接收到请求后,如果处理逻辑可以快速处理完成,那么可以直接放在IO线程处理,从而减少线程池调度与上下文切换。但是如果处理逻辑非常耗时,或者会发起新IO请求例如查询数据库,那么必须派发到业务线程池处理。

DUBBO提供了多种线程模型,选择线程模型需要在配置文件指定dispatcher属性:

  1.  
    <dubbo:protocol name="dubbo" dispatcher="all" />
  2.  
    <dubbo:protocol name="dubbo" dispatcher="direct" />
  3.  
    <dubbo:protocol name="dubbo" dispatcher="message" />
  4.  
    <dubbo:protocol name="dubbo" dispatcher="execution" />
  5.  
    <dubbo:protocol name="dubbo" dispatcher="connection" />

不同线程模型在选择是使用IO线程还是业务线程,DUBBO官网文档说明:

  1.  
    all
  2.  
    所有消息都派发到业务线程池,包括请求,响应,连接事件,断开事件,心跳
  3.  
     
  4.  
    direct
  5.  
    所有消息都不派发到业务线程池,全部在IO线程直接执行
  6.  
     
  7.  
    message
  8.  
    只有请求响应消息派发到业务线程池,其它连接断开事件,心跳等消息直接在IO线程执行
  9.  
     
  10.  
    execution
  11.  
    只有请求消息派发到业务线程池,响应和其它连接断开事件,心跳等消息直接在IO线程执行
  12.  
     
  13.  
    connection
  14.  
    在IO线程上将连接断开事件放入队列,有序逐个执行,其它消息派发到业务线程池

 

1.1.2 确定时机

生产者和消费者在初始化时确定线程模型:

  1.  
    // 生产者
  2.  
    public class NettyServer extends AbstractServer implements Server {
  3.  
        public NettyServer(URL url, ChannelHandler handler) throws RemotingException {
  4.  
            super(url, ChannelHandlers.wrap(handler, ExecutorUtil.setThreadName(url, SERVER_THREAD_POOL_NAME)));
  5.  
        }
  6.  
    }
  7.  
     
  8.  
    // 消费者
  9.  
    public class NettyClient extends AbstractClient {
  10.  
        public NettyClient(final URL url, final ChannelHandler handler) throws RemotingException {
  11.  
         super(url, wrapChannelHandler(url, handler));
  12.  
        }
  13.  
    }

生产者和消费者默认线程模型都会使用AllDispatcher,ChannelHandlers.wrap方法可以获取Dispatch自适应扩展点。如果我们在配置文件中指定dispatcher,扩展点加载器会从URL获取属性值加载对应线程模型。本文以生产者为例进行分析:

  1.  
    public class NettyServer extends AbstractServer implements Server {
  2.  
        public NettyServer(URL url, ChannelHandler handler) throws RemotingException {
  3.  
            // ChannelHandlers.wrap确定线程策略
  4.  
            super(url, ChannelHandlers.wrap(handler, ExecutorUtil.setThreadName(url, SERVER_THREAD_POOL_NAME)));
  5.  
        }
  6.  
    }
  7.  
     
  8.  
    public class ChannelHandlers {
  9.  
        protected ChannelHandler wrapInternal(ChannelHandler handler, URL url) {
  10.  
            return new MultiMessageHandler(new HeartbeatHandler(ExtensionLoader.getExtensionLoader(Dispatcher.class).getAdaptiveExtension().dispatch(handler, url)));
  11.  
        }
  12.  
    }
  13.  
     
  14.  
    @SPI(AllDispatcher.NAME)
  15.  
    public interface Dispatcher {
  16.  
        @Adaptive({Constants.DISPATCHER_KEY, "channel.handler"})
  17.  
        ChannelHandler dispatch(ChannelHandler handler, URL url);
  18.  
    }

 

1.1.3 源码分析

我们分析其中两个线程模型源码,其它线程模型请阅读DUBBO源码。AllDispatcher模型所有消息都派发到业务线程池,包括请求,响应,连接事件,断开事件,心跳:

  1.  
    public class AllDispatcher implements Dispatcher {
  2.  
     
  3.  
        // 线程模型名称
  4.  
        public static final String NAME = "all";
  5.  
     
  6.  
        // 具体实现策略
  7.  
        @Override
  8.  
        public ChannelHandler dispatch(ChannelHandler handler, URL url) {
  9.  
            return new AllChannelHandler(handler, url);
  10.  
        }
  11.  
    }
  12.  
     
  13.  
     
  14.  
    public class AllChannelHandler extends WrappedChannelHandler {
  15.  
     
  16.  
        @Override
  17.  
        public void connected(Channel channel) throws RemotingException {
  18.  
            // 连接完成事件交给业务线程池
  19.  
            ExecutorService cexecutor = getExecutorService();
  20.  
            try {
  21.  
                cexecutor.execute(new ChannelEventRunnable(channel, handler, ChannelState.CONNECTED));
  22.  
            } catch (Throwable t) {
  23.  
                throw new ExecutionException("connect event", channel, getClass() + " error when process connected event", t);
  24.  
            }
  25.  
        }
  26.  
     
  27.  
        @Override
  28.  
        public void disconnected(Channel channel) throws RemotingException {
  29.  
            // 断开连接事件交给业务线程池
  30.  
            ExecutorService cexecutor = getExecutorService();
  31.  
            try {
  32.  
                cexecutor.execute(new ChannelEventRunnable(channel, handler, ChannelState.DISCONNECTED));
  33.  
            } catch (Throwable t) {
  34.  
                throw new ExecutionException("disconnect event", channel, getClass() + " error when process disconnected event", t);
  35.  
            }
  36.  
        }
  37.  
     
  38.  
        @Override
  39.  
        public void received(Channel channel, Object message) throws RemotingException {
  40.  
            // 请求响应事件交给业务线程池
  41.  
            ExecutorService cexecutor = getExecutorService();
  42.  
            try {
  43.  
                cexecutor.execute(new ChannelEventRunnable(channel, handler, ChannelState.RECEIVED, message));
  44.  
            } catch (Throwable t) {
  45.  
                if(message instanceof Request && t instanceof RejectedExecutionException) {
  46.  
                    Request request = (Request)message;
  47.  
                    if(request.isTwoWay()) {
  48.  
                        String msg = "Server side(" + url.getIp() + "," + url.getPort() + ") threadpool is exhausted ,detail msg:" + t.getMessage();
  49.  
                        Response response = new Response(request.getId(), request.getVersion());
  50.  
                        response.setStatus(Response.SERVER_THREADPOOL_EXHAUSTED_ERROR);
  51.  
                        response.setErrorMessage(msg);
  52.  
                        channel.send(response);
  53.  
                        return;
  54.  
                    }
  55.  
                }
  56.  
                throw new ExecutionException(message, channel, getClass() + " error when process received event", t);
  57.  
            }
  58.  
        }
  59.  
     
  60.  
        @Override
  61.  
        public void caught(Channel channel, Throwable exception) throws RemotingException {
  62.  
            // 异常事件交给业务线程池
  63.  
            ExecutorService cexecutor = getExecutorService();
  64.  
            try {
  65.  
                cexecutor.execute(new ChannelEventRunnable(channel, handler, ChannelState.CAUGHT, exception));
  66.  
            } catch (Throwable t) {
  67.  
                throw new ExecutionException("caught event", channel, getClass() + " error when process caught event", t);
  68.  
            }
  69.  
        }
  70.  
    }

DirectDispatcher策略所有消息都不派发到业务线程池,全部在IO线程直接执行:

  1.  
    public class DirectDispatcher implements Dispatcher {
  2.  
     
  3.  
        // 线程模型名称
  4.  
        public static final String NAME = "direct";
  5.  
     
  6.  
        // 具体实现策略
  7.  
        @Override
  8.  
        public ChannelHandler dispatch(ChannelHandler handler, URL url) {
  9.  
            // 直接返回handler表示所有事件都交给IO线程处理
  10.  
            return handler;
  11.  
        }
  12.  
    }

 

1.2 DUBBO线程池策略

1.2.1 基本概念

上个章节分析了线程模型,我们知道不同的线程模型会选择使用还是IO线程还是业务线程。如果使用业务线程池,那么使用什么线程池策略是本章节需要回答的问题。DUBBO官网线程派发模型图展示了线程模型和线程池策略的关系:

 

DUBBO提供了多种线程池策略,选择线程池策略需要在配置文件指定threadpool属性:

  1.  
    <dubbo:protocol name="dubbo" threadpool="fixed" threads="100" />
  2.  
    <dubbo:protocol name="dubbo" threadpool="cached" threads="100" />
  3.  
    <dubbo:protocol name="dubbo" threadpool="limited" threads="100" />
  4.  
    <dubbo:protocol name="dubbo" threadpool="eager" threads="100" />

不同线程池策略会创建不同特性的线程池:

  1.  
    fixed
  2.  
    包含固定个数线程
  3.  
     
  4.  
    cached
  5.  
    线程空闲一分钟会被回收,当新请求到来时会创建新线程
  6.  
     
  7.  
    limited
  8.  
    线程个数随着任务增加而增加,但不会超过最大阈值。空闲线程不会被回收
  9.  
     
  10.  
    eager
  11.  
    当所有核心线程数都处于忙碌状态时,优先创建新线程执行任务,而不是立即放入队列

 

1.2.2 确定时机

本文我们以AllDispatcher为例分析线程池策略在什么时候确定:

  1.  
    public class AllDispatcher implements Dispatcher {
  2.  
        public static final String NAME = "all";
  3.  
     
  4.  
        @Override
  5.  
        public ChannelHandler dispatch(ChannelHandler handler, URL url) {
  6.  
            return new AllChannelHandler(handler, url);
  7.  
        }
  8.  
    }
  9.  
     
  10.  
    public class AllChannelHandler extends WrappedChannelHandler {
  11.  
        public AllChannelHandler(ChannelHandler handler, URL url) {
  12.  
            super(handler, url);
  13.  
        }
  14.  
    }

在WrappedChannelHandler构造函数中如果配置指定了threadpool属性,扩展点加载器会从URL获取属性值加载对应线程池策略,默认策略为fixed:

  1.  
    public class WrappedChannelHandler implements ChannelHandlerDelegate {
  2.  
     
  3.  
        public WrappedChannelHandler(ChannelHandler handler, URL url) {
  4.  
            this.handler = handler;
  5.  
            this.url = url;
  6.  
            // 获取线程池自适应扩展点
  7.  
            executor = (ExecutorService) ExtensionLoader.getExtensionLoader(ThreadPool.class).getAdaptiveExtension().getExecutor(url);
  8.  
            String componentKey = Constants.EXECUTOR_SERVICE_COMPONENT_KEY;
  9.  
            if (Constants.CONSUMER_SIDE.equalsIgnoreCase(url.getParameter(Constants.SIDE_KEY))) {
  10.  
                componentKey = Constants.CONSUMER_SIDE;
  11.  
            }
  12.  
            DataStore dataStore = ExtensionLoader.getExtensionLoader(DataStore.class).getDefaultExtension();
  13.  
            dataStore.put(componentKey, Integer.toString(url.getPort()), executor);
  14.  
        }
  15.  
    }
  16.  
     
  17.  
    @SPI("fixed")
  18.  
    public interface ThreadPool {
  19.  
        @Adaptive({Constants.THREADPOOL_KEY})
  20.  
        Executor getExecutor(URL url);
  21.  
    }

 

1.2.3 源码分析

(1) FixedThreadPool

  1.  
    public class FixedThreadPool implements ThreadPool {
  2.  
     
  3.  
        @Override
  4.  
        public Executor getExecutor(URL url) {
  5.  
     
  6.  
            // 线程名称
  7.  
            String name = url.getParameter(Constants.THREAD_NAME_KEY, Constants.DEFAULT_THREAD_NAME);
  8.  
     
  9.  
            // 线程个数默认200
  10.  
            int threads = url.getParameter(Constants.THREADS_KEY, Constants.DEFAULT_THREADS);
  11.  
     
  12.  
            // 队列容量默认0
  13.  
            int queues = url.getParameter(Constants.QUEUES_KEY, Constants.DEFAULT_QUEUES);
  14.  
     
  15.  
            // 队列容量等于0使用阻塞队列SynchronousQueue
  16.  
            // 队列容量小于0使用无界阻塞队列LinkedBlockingQueue
  17.  
            // 队列容量大于0使用有界阻塞队列LinkedBlockingQueue
  18.  
            return new ThreadPoolExecutor(threads, threads, 0, TimeUnit.MILLISECONDS,
  19.  
                                          queues == 0 ? new SynchronousQueue<Runnable>()
  20.  
                                          : (queues < 0 ? new LinkedBlockingQueue<Runnable>()
  21.  
                                             : new LinkedBlockingQueue<Runnable>(queues)),
  22.  
                                          new NamedInternalThreadFactory(name, true), new AbortPolicyWithReport(name, url));
  23.  
        }
  24.  
    }

 

(2) CachedThreadPool

  1.  
    public class CachedThreadPool implements ThreadPool {
  2.  
     
  3.  
        @Override
  4.  
        public Executor getExecutor(URL url) {
  5.  
     
  6.  
            // 获取线程名称
  7.  
            String name = url.getParameter(Constants.THREAD_NAME_KEY, Constants.DEFAULT_THREAD_NAME);
  8.  
     
  9.  
            // 核心线程数默认0
  10.  
            int cores = url.getParameter(Constants.CORE_THREADS_KEY, Constants.DEFAULT_CORE_THREADS);
  11.  
     
  12.  
            // 最大线程数默认Int最大值
  13.  
            int threads = url.getParameter(Constants.THREADS_KEY, Integer.MAX_VALUE);
  14.  
     
  15.  
            // 队列容量默认0
  16.  
            int queues = url.getParameter(Constants.QUEUES_KEY, Constants.DEFAULT_QUEUES);
  17.  
     
  18.  
            // 线程空闲多少时间被回收默认1分钟
  19.  
            int alive = url.getParameter(Constants.ALIVE_KEY, Constants.DEFAULT_ALIVE);
  20.  
     
  21.  
            // 队列容量等于0使用阻塞队列SynchronousQueue
  22.  
            // 队列容量小于0使用无界阻塞队列LinkedBlockingQueue
  23.  
            // 队列容量大于0使用有界阻塞队列LinkedBlockingQueue
  24.  
            return new ThreadPoolExecutor(cores, threads, alive, TimeUnit.MILLISECONDS,
  25.  
                                          queues == 0 ? new SynchronousQueue<Runnable>()
  26.  
                                          : (queues < 0 ? new LinkedBlockingQueue<Runnable>()
  27.  
                                             : new LinkedBlockingQueue<Runnable>(queues)),
  28.  
                                          new NamedInternalThreadFactory(name, true), new AbortPolicyWithReport(name, url));
  29.  
        }
  30.  
    }

 

(3) LimitedThreadPool

  1.  
    public class LimitedThreadPool implements ThreadPool {
  2.  
     
  3.  
        @Override
  4.  
        public Executor getExecutor(URL url) {
  5.  
     
  6.  
            // 获取线程名称
  7.  
            String name = url.getParameter(Constants.THREAD_NAME_KEY, Constants.DEFAULT_THREAD_NAME);
  8.  
     
  9.  
            // 核心线程数默认0
  10.  
            int cores = url.getParameter(Constants.CORE_THREADS_KEY, Constants.DEFAULT_CORE_THREADS);
  11.  
     
  12.  
            // 最大线程数默认200
  13.  
            int threads = url.getParameter(Constants.THREADS_KEY, Constants.DEFAULT_THREADS);
  14.  
     
  15.  
            // 队列容量默认0
  16.  
            int queues = url.getParameter(Constants.QUEUES_KEY, Constants.DEFAULT_QUEUES);
  17.  
     
  18.  
            // 队列容量等于0使用阻塞队列SynchronousQueue
  19.  
            // 队列容量小于0使用无界阻塞队列LinkedBlockingQueue
  20.  
            // 队列容量大于0使用有界阻塞队列LinkedBlockingQueue
  21.  
            // keepalive时间设置Long.MAX_VALUE表示不回收空闲线程
  22.  
            return new ThreadPoolExecutor(cores, threads, Long.MAX_VALUE, TimeUnit.MILLISECONDS,
  23.  
                                          queues == 0 ? new SynchronousQueue<Runnable>()
  24.  
                                          : (queues < 0 ? new LinkedBlockingQueue<Runnable>()
  25.  
                                             : new LinkedBlockingQueue<Runnable>(queues)),
  26.  
                                          new NamedInternalThreadFactory(name, true), new AbortPolicyWithReport(name, url));
  27.  
        }
  28.  
    }

 

(4) EagerThreadPool

我们知道ThreadPoolExecutor是普通线程执行器。当线程池核心线程达到阈值时新任务放入队列,当队列已满开启新线程处理,当前线程数达到最大线程数时执行拒绝策略。

但是EagerThreadPool自定义线程执行策略,当线程池核心线程达到阈值时,新任务不会放入队列而是开启新线程进行处理(要求当前线程数没有超过最大线程数)。当前线程数达到最大线程数时任务放入队列。

  1.  
    public class EagerThreadPool implements ThreadPool {
  2.  
     
  3.  
        @Override
  4.  
        public Executor getExecutor(URL url) {
  5.  
     
  6.  
            // 线程名
  7.  
            String name = url.getParameter(Constants.THREAD_NAME_KEY, Constants.DEFAULT_THREAD_NAME);
  8.  
     
  9.  
            // 核心线程数默认0
  10.  
            int cores = url.getParameter(Constants.CORE_THREADS_KEY, Constants.DEFAULT_CORE_THREADS);
  11.  
     
  12.  
            // 最大线程数默认Int最大值
  13.  
            int threads = url.getParameter(Constants.THREADS_KEY, Integer.MAX_VALUE);
  14.  
     
  15.  
            // 队列容量默认0
  16.  
            int queues = url.getParameter(Constants.QUEUES_KEY, Constants.DEFAULT_QUEUES);
  17.  
     
  18.  
            // 线程空闲多少时间被回收默认1分钟
  19.  
            int alive = url.getParameter(Constants.ALIVE_KEY, Constants.DEFAULT_ALIVE);
  20.  
     
  21.  
            // 初始化自定义线程池和队列重写相关方法
  22.  
            TaskQueue<Runnable> taskQueue = new TaskQueue<Runnable>(queues <= 0 ? 1 : queues);
  23.  
            EagerThreadPoolExecutor executor = new EagerThreadPoolExecutor(cores,
  24.  
                    threads,
  25.  
                    alive,
  26.  
                    TimeUnit.MILLISECONDS,
  27.  
                    taskQueue,
  28.  
                    new NamedInternalThreadFactory(name, true),
  29.  
                    new AbortPolicyWithReport(name, url));
  30.  
            taskQueue.setExecutor(executor);
  31.  
            return executor;
  32.  
        }
  33.  
    }

 

1.3 一个公式

现在我们知道DUBBO会选择线程池策略进行业务处理,那么应该如何估算可能产生的线程数呢?我们首先分析一个问题:一个公司有7200名员工,每天上班打卡时间是早上8点到8点30分,每次打卡时间系统执行时长为5秒。请问RT、QPS、并发量分别是多少?

RT表示响应时间,问题已经告诉了我们答案:

RT = 5

QPS表示每秒查询量,假设签到行为平均分布:

QPS = 7200 / (30 * 60) = 4

并发量表示系统同时处理的请求数量:

并发量 = QPS x RT = 4 x 5 = 20

根据上述实例引出如下公式:

并发量 = QPS x RT

如果系统为每一个请求分配一个处理线程,那么并发量可以近似等于线程数。基于上述公式不难看出并发量受QPS和RT影响,这两个指标任意一个上升就会导致并发量上升。

但是这只是理想情况,因为并发量受限于系统能力而不可能持续上升,例如DUBBO线程池就对线程数做了限制,超出最大线程数限制则会执行拒绝策略,而拒绝策略会提示线程池已满,这就是DUBBO线程池打满问题的根源。下面我们分析RT上升和QPS上升这两个原因。

 

2 RT上升

2.1 生产者发生慢服务

2.1.1 原因分析

(1) 生产者配置

  1.  
    <beans>
  2.  
        <dubbo:registry address="zookeeper://127.0.0.1:2181" />
  3.  
        <dubbo:protocol name="dubbo" port="9999" />
  4.  
        <dubbo:service interface="com.java.front.dubbo.demo.provider.HelloService" ref="helloService" />
  5.  
    </beans>    

 

(2) 生产者业务

  1.  
    package com.java.front.dubbo.demo.provider;
  2.  
    public interface HelloService {
  3.  
        public String sayHello(String name) throws Exception;
  4.  
    }
  5.  
     
  6.  
    public class HelloServiceImpl implements HelloService {
  7.  
        public String sayHello(String name) throws Exception {
  8.  
            String result = "hello[" + name + "]";
  9.  
            // 模拟慢服务
  10.  
           Thread.sleep(10000L); 
  11.  
           System.out.println("生产者执行结果" + result);
  12.  
           return result;
  13.  
        }
  14.  
    }

 

(3) 消费者配置

  1.  
    <beans>
  2.  
        <dubbo:registry address="zookeeper://127.0.0.1:2181" />
  3.  
        <dubbo:reference id="helloService" interface="com.java.front.dubbo.demo.provider.HelloService" />
  4.  
    </beans>    

 

(4) 消费者业务

  1.  
    public class Consumer {
  2.  
     
  3.  
        @Test
  4.  
        public void testThread() {
  5.  
            ClassPathXmlApplicationContext context = new ClassPathXmlApplicationContext(new String[] { "classpath*:METAINF/spring/dubbo-consumer.xml" });
  6.  
            context.start();
  7.  
            for (int i = 0; i < 500; i++) {
  8.  
                new Thread(new Runnable() {
  9.  
                    @Override
  10.  
                    public void run() {
  11.  
                        HelloService helloService = (HelloService) context.getBean("helloService");
  12.  
                        String result;
  13.  
                        try {
  14.  
                            result = helloService.sayHello("微信公众号「JAVA前线」");
  15.  
                            System.out.println("客户端收到结果" + result);
  16.  
                        } catch (Exception e) {
  17.  
                            System.out.println(e.getMessage());
  18.  
                        }
  19.  
                    }
  20.  
                }).start();
  21.  
            }
  22.  
        }
  23.  
    }

依次运行生产者和消费者代码,会发现日志中出现报错信息。生产者日志会打印线程池已满:

  1.  
    Caused by: java.util.concurrent.RejectedExecutionException: Thread pool is EXHAUSTED! Thread Name: DubboServerHandler-x.x.x.x:9999, Pool Size: 200 (active: 200, core: 200, max: 200, largest: 200), Task: 201 (completed: 1), Executor status:(isShutdown:false, isTerminated:false, isTerminating:false), in dubbo://x.x.x.x:9999!
  2.  
    at org.apache.dubbo.common.threadpool.support.AbortPolicyWithReport.rejectedExecution(AbortPolicyWithReport.java:67)
  3.  
    at java.util.concurrent.ThreadPoolExecutor.reject(ThreadPoolExecutor.java:830)
  4.  
    at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1379)
  5.  
    at org.apache.dubbo.remoting.transport.dispatcher.all.AllChannelHandler.caught(AllChannelHandler.java:88)

消费者日志不仅会打印线程池已满,还会打印服务提供者信息和调用方法,我们可以根据日志找到哪一个方法有问题:

  1.  
    Failed to invoke the method sayHello in the service com.java.front.dubbo.demo.provider.HelloService. 
  2.  
    Tried 3 times of the providers [x.x.x.x:9999] (1/1) from the registry 127.0.0.1:2181 on the consumer x.x.x.x 
  3.  
    using the dubbo version 2.7.0-SNAPSHOT. Last error is: Failed to invoke remote method: sayHello, 
  4.  
    provider: dubbo://x.x.x.x:9999/com.java.front.dubbo.demo.provider.HelloService?anyhost=true&application=xpz-consumer1&check=false&dubbo=2.0.2&generic=false&group=&interface=com.java.front.dubbo.demo.provider.HelloService&logger=log4j&methods=sayHello&pid=33432&register.ip=x.x.x.x&release=2.7.0-SNAPSHOT&remote.application=xpz-provider&remote.timestamp=1618632597509&side=consumer&timeout=100000000&timestamp=1618632617392, 
  5.  
    cause: Server side(x.x.x.x,9999) threadpool is exhausted ,detail msg:Thread pool is EXHAUSTED! Thread Name: DubboServerHandler-x.x.x.x:9999, Pool Size: 200 (active: 200, core: 200, max: 200, largest: 200), Task: 401 (completed: 201), Executor status:(isShutdown:false, isTerminated:false, isTerminating:false), in dubbo://x.x.x.x:9999!

 

2.1.2 解决方案

(1) 找出慢服务

DUBBO线程池打满时会执行拒绝策略:

  1.  
    public class AbortPolicyWithReport extends ThreadPoolExecutor.AbortPolicy {
  2.  
        protected static final Logger logger = LoggerFactory.getLogger(AbortPolicyWithReport.class);
  3.  
        private final String threadName;
  4.  
        private final URL url;
  5.  
        private static volatile long lastPrintTime = 0;
  6.  
        private static Semaphore guard = new Semaphore(1);
  7.  
     
  8.  
        public AbortPolicyWithReport(String threadName, URL url) {
  9.  
            this.threadName = threadName;
  10.  
            this.url = url;
  11.  
        }
  12.  
     
  13.  
        @Override
  14.  
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
  15.  
            String msg = String.format("Thread pool is EXHAUSTED!" +
  16.  
                                       " Thread Name: %s, Pool Size: %d (active: %d, core: %d, max: %d, largest: %d), Task: %d (completed: %d)," +
  17.  
                                       " Executor status:(isShutdown:%s, isTerminated:%s, isTerminating:%s), in %s://%s:%d!",
  18.  
                                       threadName, e.getPoolSize(), e.getActiveCount(), e.getCorePoolSize(), e.getMaximumPoolSize(), e.getLargestPoolSize(),
  19.  
                                       e.getTaskCount(), e.getCompletedTaskCount(), e.isShutdown(), e.isTerminated(), e.isTerminating(),
  20.  
                                       url.getProtocol(), url.getIp(), url.getPort());
  21.  
            logger.warn(msg);
  22.  
            // 打印线程快照
  23.  
            dumpJStack();
  24.  
            throw new RejectedExecutionException(msg);
  25.  
        }
  26.  
     
  27.  
        private void dumpJStack() {
  28.  
            long now = System.currentTimeMillis();
  29.  
     
  30.  
            // 每10分钟输出线程快照
  31.  
            if (now - lastPrintTime < 10 * 60 * 1000) {
  32.  
                return;
  33.  
            }
  34.  
            if (!guard.tryAcquire()) {
  35.  
                return;
  36.  
            }
  37.  
     
  38.  
            ExecutorService pool = Executors.newSingleThreadExecutor();
  39.  
            pool.execute(() -> {
  40.  
                String dumpPath = url.getParameter(Constants.DUMP_DIRECTORY, System.getProperty("user.home"));
  41.  
                System.out.println("AbortPolicyWithReport dumpJStack directory=" + dumpPath);
  42.  
                SimpleDateFormat sdf;
  43.  
                String os = System.getProperty("os.name").toLowerCase();
  44.  
     
  45.  
                // linux文件位置/home/xxx/Dubbo_JStack.log.2021-01-01_20:50:15
  46.  
                // windows文件位置/user/xxx/Dubbo_JStack.log.2020-01-01_20-50-15
  47.  
                if (os.contains("win")) {
  48.  
                    sdf = new SimpleDateFormat("yyyy-MM-dd_HH-mm-ss");
  49.  
                } else {
  50.  
                    sdf = new SimpleDateFormat("yyyy-MM-dd_HH:mm:ss");
  51.  
                }
  52.  
                String dateStr = sdf.format(new Date());
  53.  
                try (FileOutputStream jStackStream = new FileOutputStream(new File(dumpPath, "Dubbo_JStack.log" + "." + dateStr))) {
  54.  
                    JVMUtil.jstack(jStackStream);
  55.  
                } catch (Throwable t) {
  56.  
                    logger.error("dump jStack error", t);
  57.  
                } finally {
  58.  
                    guard.release();
  59.  
                }
  60.  
                lastPrintTime = System.currentTimeMillis();
  61.  
            });
  62.  
            pool.shutdown();
  63.  
        }
  64.  
    }

拒绝策略会输出线程快照文件,在分析线程快照文件时BLOCKED和TIMED_WAITING线程状态需要我们重点关注。如果发现大量线程阻塞或者等待状态则可以定位到具体代码行:

  1.  
    DubboServerHandler-x.x.x.x:9999-thread-200 Id=230 TIMED_WAITING
  2.  
    at java.lang.Thread.sleep(Native Method)
  3.  
    at com.java.front.dubbo.demo.provider.HelloServiceImpl.sayHello(HelloServiceImpl.java:13)
  4.  
    at org.apache.dubbo.common.bytecode.Wrapper1.invokeMethod(Wrapper1.java)
  5.  
    at org.apache.dubbo.rpc.proxy.javassist.JavassistProxyFactory$1.doInvoke(JavassistProxyFactory.java:56)
  6.  
    at org.apache.dubbo.rpc.proxy.AbstractProxyInvoker.invoke(AbstractProxyInvoker.java:85)
  7.  
    at org.apache.dubbo.config.invoker.DelegateProviderMetaDataInvoker.invoke(DelegateProviderMetaDataInvoker.java:56)
  8.  
    at org.apache.dubbo.rpc.protocol.InvokerWrapper.invoke(InvokerWrapper.java:56)

 

(2) 优化慢服务

现在已经找到了慢服务,此时我们就可以优化慢服务了。优化慢服务就需要具体问题具体分析了,这不是本文的重点在此不进行展开。

 

2.2 生产者预热不充分

2.2.1 原因分析

还有一种RT上升的情况是我们不能忽视的,这种情况就是提供者重启后预热不充分即被调用。因为当生产者刚启动时需要预热,需要和其它资源例如数据库、缓存等建立连接,建立连接是需要时间的。如果此时大量消费者请求到未预热的生产者,链路时间增加了连接时间,RT时间必然会增加,从而也会导致DUBBO线程池打满问题。

 

2.2.2 解决方案

(1) 等待生产者充分预热

因为生产者预热不充分导致线程池打满问题,最容易发生在系统发布时。例如发布了一台机器后发现线上出现线程池打满问题,千万不要着急重启机器,而是给机器一段时间预热,等连接建立后问题大概率消失。同时我们在发布时也要分多批次发布,不要一次发布太多机器导致服务因为预热问题造成大面积影响。

 

(2) DUBBO升级版本大于等于2.7.4

DUBBO消费者在调用选择生产者时本身就会执行预热逻辑,为什么还会出现预热不充分问题?这是因为2.5.5之前版本以及2.7.2版本预热机制是有问题的,简而言之就是获取启动时间不正确,2.7.4版本彻底解决了这个问题,所以我们要避免使用问题版本。下面我们阅读2.7.0版本预热机制源码,看看预热机制如何生效:

  1.  
    public class RandomLoadBalance extends AbstractLoadBalance {
  2.  
     
  3.  
        public static final String NAME = "random";
  4.  
     
  5.  
        @Override
  6.  
        protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
  7.  
     
  8.  
            // invokers数量
  9.  
            int length = invokers.size();
  10.  
     
  11.  
            // 权重是否相同
  12.  
            boolean sameWeight = true;
  13.  
     
  14.  
            // invokers权重数组
  15.  
            int[] weights = new int[length];
  16.  
     
  17.  
            // 第一个invoker权重
  18.  
            int firstWeight = getWeight(invokers.get(0), invocation);
  19.  
            weights[0] = firstWeight;
  20.  
     
  21.  
            // 权重值之和
  22.  
            int totalWeight = firstWeight;
  23.  
            for (int i = 1; i < length; i++) {
  24.  
                // 计算权重值
  25.  
                int weight = getWeight(invokers.get(i), invocation);
  26.  
                weights[i] = weight;
  27.  
                totalWeight += weight;
  28.  
     
  29.  
                // 任意一个invoker权重值不等于第一个invoker权重值则sameWeight设置为FALSE
  30.  
                if (sameWeight && weight != firstWeight) {
  31.  
                    sameWeight = false;
  32.  
                }
  33.  
            }
  34.  
            // 权重值不等则根据总权重值计算
  35.  
            if (totalWeight > 0 && !sameWeight) {
  36.  
                int offset = ThreadLocalRandom.current().nextInt(totalWeight);
  37.  
                // 不断减去权重值当小于0时直接返回
  38.  
                for (int i = 0; i < length; i++) {
  39.  
                    offset -= weights[i];
  40.  
                    if (offset < 0) {
  41.  
                        return invokers.get(i);
  42.  
                    }
  43.  
                }
  44.  
            }
  45.  
            // 所有服务权重值一致则随机返回
  46.  
            return invokers.get(ThreadLocalRandom.current().nextInt(length));
  47.  
        }
  48.  
    }
  49.  
     
  50.  
    public abstract class AbstractLoadBalance implements LoadBalance {
  51.  
     
  52.  
        static int calculateWarmupWeight(int uptime, int warmup, int weight) {
  53.  
            // uptime/(warmup*weight)
  54.  
            // 如果当前服务提供者没过预热期,用户设置的权重将通过uptime/warmup减小
  55.  
            // 如果服务提供者设置权重很大但是还没过预热时间,重新计算权重会很小
  56.  
            int ww = (int) ((float) uptime / ((float) warmup / (float) weight));
  57.  
            return ww < 1 ? 1 : (ww > weight ? weight : ww);
  58.  
        }
  59.  
     
  60.  
        protected int getWeight(Invoker<?> invoker, Invocation invocation) {
  61.  
     
  62.  
            // 获取invoker设置权重值默认权重=100
  63.  
            int weight = invoker.getUrl().getMethodParameter(invocation.getMethodName(), Constants.WEIGHT_KEY, Constants.DEFAULT_WEIGHT);
  64.  
     
  65.  
            // 如果权重大于0
  66.  
            if (weight > 0) {
  67.  
     
  68.  
                // 服务提供者发布服务时间戳
  69.  
                long timestamp = invoker.getUrl().getParameter(Constants.REMOTE_TIMESTAMP_KEY, 0L);
  70.  
                if (timestamp > 0L) {
  71.  
     
  72.  
                    // 服务已经发布多少时间
  73.  
                    int uptime = (int) (System.currentTimeMillis() - timestamp);
  74.  
     
  75.  
                    // 预热时间默认10分钟
  76.  
                    int warmup = invoker.getUrl().getParameter(Constants.WARMUP_KEY, Constants.DEFAULT_WARMUP);
  77.  
     
  78.  
                    // 生产者发布时间大于0但是小于预热时间
  79.  
                    if (uptime > 0 && uptime < warmup) {
  80.  
     
  81.  
                        // 重新计算权重值
  82.  
                        weight = calculateWarmupWeight(uptime, warmup, weight);
  83.  
                    }
  84.  
                }
  85.  
            }
  86.  
            // 服务发布时间大于预热时间直接返回设置权重值
  87.  
            return weight >= 0 ? weight : 0;
  88.  
        }
  89.  
    }

 

3 QPS上升

上面章节大篇幅讨论了由于RT上升造成的线程池打满问题,现在我们讨论另一个参数QPS。当上游流量激增会导致创建大量线程池,也会造成线程池打满问题。这时如果发现QPS超出了系统承受能力,我们不得不采用降级方案保护系统,请参看我之前文章《从反脆弱角度谈技术系统的高可用性》

 

4 文章总结

本文首先介绍了DUBBO线程模型和线程池策略,然后我们引出了公式,发现并发量受RT和QPS两个参数影响,这两个参数任意一个上升都可以造成线程池打满问题。生产者出现慢服务或者预热不充分都有可能造成RT上升,而上游流量激增会造成QPS上升,同时本文也给出了解决方案。DUBBO线程池打满是一个必须重视的问题,希望本文对大家有所帮助。

— 本文结束 —

posted @ 2023-04-04 16:35  小学生II  阅读(324)  评论(0编辑  收藏  举报