RDD算子
RDD算子
#常用Transformation(即转换,延迟加载) #通过并行化scala集合创建RDD val rdd1 = sc.parallelize(Array(1,2,3,4,5,6,7,8)) #查看该rdd的分区数量 rdd1.partitions.length val rdd1 = sc.parallelize(List(5,6,4,7,3,8,2,9,1,10)) val rdd2 = sc.parallelize(List(5,6,4,7,3,8,2,9,1,10)).map(_*2).sortBy(x=>x,true) val rdd3 = rdd2.filter(_>10) val rdd2 = sc.parallelize(List(5,6,4,7,3,8,2,9,1,10)).map(_*2).sortBy(x=>x+"",true) val rdd2 = sc.parallelize(List(5,6,4,7,3,8,2,9,1,10)).map(_*2).sortBy(x=>x.toString,true) val rdd4 = sc.parallelize(Array("a b c", "d e f", "h i j")) rdd4.flatMap(_.split(' ')).collect val rdd5 = sc.parallelize(List(List("a b c", "a b b"),List("e f g", "a f g"), List("h i j", "a a b"))) List("a b c", "a b b") =List("a","b",)) rdd5.flatMap(_.flatMap(_.split(" "))).collect #union求并集,注意类型要一致 val rdd6 = sc.parallelize(List(5,6,4,7)) val rdd7 = sc.parallelize(List(1,2,3,4)) val rdd8 = rdd6.union(rdd7) rdd8.distinct.sortBy(x=>x).collect #intersection求交集 val rdd9 = rdd6.intersection(rdd7) val rdd1 = sc.parallelize(List(("tom", 1), ("jerry", 2), ("kitty", 3))) val rdd2 = sc.parallelize(List(("jerry", 9), ("tom", 8), ("shuke", 7), ("tom", 2))) #join(连接) val rdd3 = rdd1.join(rdd2) val rdd3 = rdd1.leftOuterJoin(rdd2) val rdd3 = rdd1.rightOuterJoin(rdd2) #groupByKey val rdd3 = rdd1 union rdd2 rdd3.groupByKey //(tom,CompactBuffer(1, 8, 2)) rdd3.groupByKey.map(x=>(x._1,x._2.sum)) groupByKey.mapValues(_.sum).collect Array((tom,CompactBuffer(1, 8, 2)), (jerry,CompactBuffer(9, 2)), (shuke,CompactBuffer(7)), (kitty,CompactBuffer(3))) #WordCount sc.textFile("/root/words.txt").flatMap(x=>x.split(" ")).map((_,1)).reduceByKey(_+_).sortBy(_._2,false).collect sc.textFile("/root/words.txt").flatMap(x=>x.split(" ")).map((_,1)).groupByKey.map(t=>(t._1, t._2.sum)).collect #cogroup val rdd1 = sc.parallelize(List(("tom", 1), ("tom", 2), ("jerry", 3), ("kitty", 2))) val rdd2 = sc.parallelize(List(("jerry", 2), ("tom", 1), ("shuke", 2))) val rdd3 = rdd1.cogroup(rdd2) val rdd4 = rdd3.map(t=>(t._1, t._2._1.sum + t._2._2.sum)) #cartesian笛卡尔积 val rdd1 = sc.parallelize(List("tom", "jerry")) val rdd2 = sc.parallelize(List("tom", "kitty", "shuke")) val rdd3 = rdd1.cartesian(rdd2) ################################################################################################### #spark action val rdd1 = sc.parallelize(List(1,2,3,4,5), 2) #collect rdd1.collect #reduce val r = rdd1.reduce(_+_) #count rdd1.count #top rdd1.top(2) #take rdd1.take(2) #first(similer to take(1)) rdd1.first #takeOrdered rdd1.takeOrdered(3)
spark RDD api
http://homepage.cs.latrobe.edu.au/zhe/ZhenHeSparkRDDAPIExamples.html mapPartitionsWithIndex val func = (index: Int, iter: Iterator[(String)]) => { iter.map(x => "[partID:" + index + ", val: " + x + "]") } mapPartitionsWithIndex val func = (index: Int, iter: Iterator[Int]) => { iter.map(x => "[partID:" + index + ", val: " + x + "]") } val rdd1 = sc.parallelize(List(1,2,3,4,5,6,7,8,9), 2) rdd1.mapPartitionsWithIndex(func).collect ------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------- aggregate def func1(index: Int, iter: Iterator[(Int)]) : Iterator[String] = { iter.toList.map(x => "[partID:" + index + ", val: " + x + "]").iterator } val rdd1 = sc.parallelize(List(1,2,3,4,5,6,7,8,9), 2) rdd1.mapPartitionsWithIndex(func1).collect rdd1.aggregate(0)(math.max(_, _), _ + _) rdd1.aggregate(5)(math.max(_, _), _ + _) val rdd2 = sc.parallelize(List("a","b","c","d","e","f"),2) def func2(index: Int, iter: Iterator[(String)]) : Iterator[String] = { iter.toList.map(x => "[partID:" + index + ", val: " + x + "]").iterator } rdd2.aggregate("")(_ + _, _ + _) rdd2.aggregate("=")(_ + _, _ + _) val rdd3 = sc.parallelize(List("12","23","345","4567"),2) rdd3.aggregate("")((x,y) => math.max(x.length, y.length).toString, (x,y) => x + y) val rdd4 = sc.parallelize(List("12","23","345",""),2) rdd4.aggregate("")((x,y) => math.min(x.length, y.length).toString, (x,y) => x + y) val rdd5 = sc.parallelize(List("12","23","","345"),2) rdd5.aggregate("")((x,y) => math.min(x.length, y.length).toString, (x,y) => x + y) ------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------- aggregateByKey val pairRDD = sc.parallelize(List( ("cat",2), ("cat", 5), ("mouse", 4),("cat", 12), ("dog", 12), ("mouse", 2)), 2) def func2(index: Int, iter: Iterator[(String, Int)]) : Iterator[String] = { iter.map(x => "[partID:" + index + ", val: " + x + "]") } pairRDD.mapPartitionsWithIndex(func2).collect pairRDD.aggregateByKey(0)(math.max(_, _), _ + _).collect pairRDD.aggregateByKey(100)(math.max(_, _), _ + _).collect ------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------- checkpoint sc.setCheckpointDir("hdfs://node-1.edu360.cn:9000/ck") val rdd = sc.textFile("hdfs://node-1.edu360.cn:9000/wc").flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_) rdd.checkpoint rdd.isCheckpointed rdd.count rdd.isCheckpointed rdd.getCheckpointFile ------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------- coalesce, repartition val rdd1 = sc.parallelize(1 to 10, 10) val rdd2 = rdd1.coalesce(2, false) rdd2.partitions.length ------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------- collectAsMap val rdd = sc.parallelize(List(("a", 1), ("b", 2))) rdd.collectAsMap ------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------- combineByKey val rdd1 = sc.textFile("hdfs://node-1.edu360.cn:9000/wc").flatMap(_.split(" ")).map((_, 1)) val rdd2 = rdd1.combineByKey(x => x, (a: Int, b: Int) => a + b, (m: Int, n: Int) => m + n) rdd2.collect val rdd3 = rdd1.combineByKey(x => x + 10, (a: Int, b: Int) => a + b, (m: Int, n: Int) => m + n) rdd3.collect val rdd4 = sc.parallelize(List("dog","cat","gnu","salmon","rabbit","turkey","wolf","bear","bee"), 3) val rdd5 = sc.parallelize(List(1,1,2,2,2,1,2,2,2), 3) val rdd6 = rdd5.zip(rdd4) val rdd7 = rdd6.combineByKey(List(_), (x: List[String], y: String) => x :+ y, (m: List[String], n: List[String]) => m ++ n) ------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------- countByKey val rdd1 = sc.parallelize(List(("a", 1), ("b", 2), ("b", 2), ("c", 2), ("c", 1))) rdd1.countByKey rdd1.countByValue ------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------- filterByRange val rdd1 = sc.parallelize(List(("e", 5), ("c", 3), ("d", 4), ("c", 2), ("a", 1))) val rdd2 = rdd1.filterByRange("b", "d") rdd2.colllect ------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------- flatMapValues val a = sc.parallelize(List(("a", "1 2"), ("b", "3 4"))) rdd3.flatMapValues(_.split(" ")) ------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------- foldByKey val rdd1 = sc.parallelize(List("dog", "wolf", "cat", "bear"), 2) val rdd2 = rdd1.map(x => (x.length, x)) val rdd3 = rdd2.foldByKey("")(_+_) val rdd = sc.textFile("hdfs://node-1.edu360.cn:9000/wc").flatMap(_.split(" ")).map((_, 1)) rdd.foldByKey(0)(_+_) ------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------- foreachPartition val rdd1 = sc.parallelize(List(1, 2, 3, 4, 5, 6, 7, 8, 9), 3) rdd1.foreachPartition(x => println(x.reduce(_ + _))) ------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------- keyBy val rdd1 = sc.parallelize(List("dog", "salmon", "salmon", "rat", "elephant"), 3) val rdd2 = rdd1.keyBy(_.length) rdd2.collect ------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------- keys values val rdd1 = sc.parallelize(List("dog", "tiger", "lion", "cat", "panther", "eagle"), 2) val rdd2 = rdd1.map(x => (x.length, x)) rdd2.keys.collect rdd2.values.collect ------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------- mapPartitions( it: Iterator => {it.map(x => x * 10)})