豆瓣爬虫
豆瓣爬虫
import requests from bs4 import BeautifulSoup import pandas as pd from sklearn.linear_model import LinearRegression import seaborn as sns import numpy as np import matplotlib.pyplot as plt import matplotlib from scipy.optimize import leastsq def get_html(url): headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:86.0) Gecko/20100101 Firefox/86.0'}#伪装爬虫 resp = requests.get(url, headers = headers) return resp.text url = 'https://movie.douban.com/top250' html = get_html(url) soup = BeautifulSoup(html, 'html.parser') a = soup.find_all('div', class_='hd') #电影名 film_name = [] for i in a: film_name.append(i.a.span.text) #评分 rating_score = soup.find_all('span', class_='rating_num') lt = [] num = 20 for i in range(num): lt.append([i+1,film_name[i], rating_score[i].string]) df=pd.DataFrame(lt,columns = ['排名', '电影名', '评分']) df.to_csv(r'C:\Users\admir\Desktop\参考\豆瓣电影数据.csv') #保存文件,数据持久化
根据网页格式调整实现批量输出
import json import requests from requests.exceptions import RequestException import re import time def get_one_page(url): try: headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:86.0) Gecko/20100101 Firefox/86.0' } #网络 html发起者 请求 消息头 response = requests.get(url, headers=headers) if response.status_code == 200: return response.text return None except RequestException: return None def parse_one_page(html): pattern = re.compile('<li>.*?<em class="">(.*?)</em>.*?title.*?>(.*?)</span>.*? <span class="rating_num" property="v:average">(.*?)</span>.*?<span class="inq">(.*?)</span>',re.S) items = re.findall(pattern, html) for item in items: yield {'index': item[0], 'title': item[1], 'score': item[2], 'comment':item[3] } def write_to_file(content): with open(r'C:\Users\admir\Desktop\参考\douban250.txt', 'a', encoding='utf-8') as f:
#写入txt文件;如果需要输出csv文件直接修改后缀即可 f.write(json.dumps(content, ensure_ascii=False) + '\n') def main(offset): url = 'https://movie.douban.com/top250?start='+str(offset)+'&filter=' html = get_one_page(url) for item in parse_one_page(html): print(item) write_to_file(item) if __name__ == '__main__': for i in range(10): main(offset=i * 25) time.sleep(1)