摘要: 本文主要记录自己在学习稀疏表示在人脸识别中的应用所遇到的问题作一简单的总结。1. 问题背景 信号的稀疏表示并不是新的东西。我们很早就一直在利用这一特性。例如,最简单的JPEG图像压缩算法。原始的图像信号经过DCT变换之后,只有极少数元素是非零的,而大部分元素都等于零或者说接近于零。这就是信号的稀疏性。 任何模型都有建模的假设条件。压缩感知,正是利用的信号的稀疏性这个假设。对于我们处理的信号,时域上本身就具有稀疏性的信号是很少的。但是,我们总能找到某种变换,使得在某个变换域之后信号具有稀疏性。这种变换是很多的,最常见的就是DCT变换,小波变换,gabor变换等。 然而,这种正交... 阅读全文
posted @ 2013-07-06 13:53 celerychen 阅读(2910) 评论(1) 推荐(1) 编辑