CUDA编程札记
const int N = 33 * 1024; const int threadsPerBlock = 256; const int blocksPerGrid = imin( 32, (N+threadsPerBlock-1) / threadsPerBlock ); __global__ void dot( float *a, float *b, float *c ) { __shared__ float cache[threadsPerBlock]; int tid = threadIdx.x + blockIdx.x * blockDim.x; int cacheIndex = threadIdx.x; float temp = 0; while (tid < N) { temp += a[tid] * b[tid]; tid += blockDim.x * gridDim.x; } // set the cache values cache[cacheIndex] = temp; // synchronize threads in this block __syncthreads(); // for reductions, threadsPerBlock must be a power of 2 // because of the following code int i = blockDim.x/2; while (i != 0) { if (cacheIndex < i) cache[cacheIndex] += cache[cacheIndex + i]; __syncthreads(); i /= 2; } if (cacheIndex == 0) c[blockIdx.x] = cache[0]; } int main( void ) { float *a, *b, c, *partial_c; float *dev_a, *dev_b, *dev_partial_c; // allocate memory on the cpu side a = (float*)malloc( N*sizeof(float) ); b = (float*)malloc( N*sizeof(float) ); partial_c = (float*)malloc( blocksPerGrid*sizeof(float) ); // allocate the memory on the GPU HANDLE_ERROR( cudaMalloc( (void**)&dev_a, N*sizeof(float) ) ); HANDLE_ERROR( cudaMalloc( (void**)&dev_b, N*sizeof(float) ) ); HANDLE_ERROR( cudaMalloc( (void**)&dev_partial_c, blocksPerGrid*sizeof(float) ) ); // fill in the host memory with data for (int i=0; i<N; i++) { a[i] = i; b[i] = i*2; } // copy the arrays 'a' and 'b' to the GPU HANDLE_ERROR( cudaMemcpy( dev_a, a, N*sizeof(float), cudaMemcpyHostToDevice ) ); HANDLE_ERROR( cudaMemcpy( dev_b, b, N*sizeof(float), cudaMemcpyHostToDevice ) ); dot<<<blocksPerGrid,threadsPerBlock>>>( dev_a, dev_b, dev_partial_c ); // copy the array 'c' back from the GPU to the CPU HANDLE_ERROR( cudaMemcpy( partial_c, dev_partial_c, blocksPerGrid*sizeof(float), cudaMemcpyDeviceToHost ) ); // finish up on the CPU side c = 0; for (int i=0; i<blocksPerGrid; i++) { c += partial_c[i]; } #define sum_squares(x) (x*(x+1)*(2*x+1)/6) printf( "Does GPU value %.6g = %.6g?\n", c, 2 * sum_squares( (float)(N - 1) ) ); // free memory on the gpu side HANDLE_ERROR( cudaFree( dev_a ) ); HANDLE_ERROR( cudaFree( dev_b ) ); HANDLE_ERROR( cudaFree( dev_partial_c ) ); // free memory on the cpu side free( a ); free( b ); free( partial_c ); }
struct Lock { int *mutex; Lock( void ) { HANDLE_ERROR( cudaMalloc( (void**)&mutex,sizeof(int) ) ); HANDLE_ERROR( cudaMemset( mutex, 0, sizeof(int) ) ); } ~Lock( void ) { cudaFree( mutex ); } __device__ void lock( void ) { while( atomicCAS( mutex, 0, 1 ) != 0 ); } __device__ void unlock( void ) { atomicExch( mutex, 0 ); } };
#define imin(a,b) (a<b?a:b) const int N = 33 * 1024 * 1024; const int threadsPerBlock = 256; const int blocksPerGrid = imin( 32, (N+threadsPerBlock-1) / threadsPerBlock ); __global__ void dot( Lock lock, float *a, float *b, float *c ) { __shared__ float cache[threadsPerBlock]; int tid = threadIdx.x + blockIdx.x * blockDim.x; int cacheIndex = threadIdx.x; float temp = 0; while (tid < N) { temp += a[tid] * b[tid]; tid += blockDim.x * gridDim.x; } // set the cache values cache[cacheIndex] = temp; // synchronize threads in this block __syncthreads(); // for reductions, threadsPerBlock must be a power of 2 // because of the following code int i = blockDim.x/2; while (i != 0) { if (cacheIndex < i) cache[cacheIndex] += cache[cacheIndex + i]; __syncthreads(); i /= 2; } if (cacheIndex == 0) { // wait until we get the lock lock.lock(); // we have the lock at this point, update and release *c += cache[0]; lock.unlock(); } } int main( void ) { float *a, *b, c = 0; float *dev_a, *dev_b, *dev_c; // allocate memory on the cpu side a = (float*)malloc( N*sizeof(float) ); b = (float*)malloc( N*sizeof(float) ); // allocate the memory on the GPU HANDLE_ERROR( cudaMalloc( (void**)&dev_a, N*sizeof(float) ) ); HANDLE_ERROR( cudaMalloc( (void**)&dev_b, N*sizeof(float) ) ); HANDLE_ERROR( cudaMalloc( (void**)&dev_c, sizeof(float) ) ); // fill in the host memory with data for (int i=0; i<N; i++) { a[i] = i; b[i] = i*2; } // copy the arrays 'a' and 'b' to the GPU HANDLE_ERROR( cudaMemcpy( dev_a, a, N*sizeof(float), cudaMemcpyHostToDevice ) ); HANDLE_ERROR( cudaMemcpy( dev_b, b, N*sizeof(float), cudaMemcpyHostToDevice ) ); HANDLE_ERROR( cudaMemcpy( dev_c, &c, sizeof(float), cudaMemcpyHostToDevice ) ); Lock lock; dot<<<blocksPerGrid,threadsPerBlock>>>( lock, dev_a, dev_b, dev_c ); // copy c back from the GPU to the CPU HANDLE_ERROR( cudaMemcpy( &c, dev_c, sizeof(float), cudaMemcpyDeviceToHost ) ); #define sum_squares(x) (x*(x+1)*(2*x+1)/6) printf( "Does GPU value %.6g = %.6g?\n", c, 2 * sum_squares( (float)(N - 1) ) ); // free memory on the gpu side HANDLE_ERROR( cudaFree( dev_a ) ); HANDLE_ERROR( cudaFree( dev_b ) ); HANDLE_ERROR( cudaFree( dev_c ) ); // free memory on the cpu side free( a ); free( b ); }
__global__ void histo_kernel( unsigned char *buffer, long size, unsigned int *histo ) { // calculate the starting index and the offset to the next // block that each thread will be processing int i = threadIdx.x + blockIdx.x * blockDim.x; int stride = blockDim.x * gridDim.x; while (i < size) { atomicAdd( &histo[buffer[i]], 1 ); i += stride; } } int main( void ) { unsigned char *buffer = (unsigned char*)big_random_block( SIZE ); // capture the start time // starting the timer here so that we include the cost of // all of the operations on the GPU. cudaEvent_t start, stop; HANDLE_ERROR( cudaEventCreate( &start ) ); HANDLE_ERROR( cudaEventCreate( &stop ) ); HANDLE_ERROR( cudaEventRecord( start, 0 ) ); // allocate memory on the GPU for the file's data unsigned char *dev_buffer; unsigned int *dev_histo; HANDLE_ERROR( cudaMalloc( (void**)&dev_buffer, SIZE ) ); HANDLE_ERROR( cudaMemcpy( dev_buffer, buffer, SIZE, cudaMemcpyHostToDevice ) ); HANDLE_ERROR( cudaMalloc( (void**)&dev_histo, 256 * sizeof( int ) ) ); HANDLE_ERROR( cudaMemset( dev_histo, 0, 256 * sizeof( int ) ) ); // kernel launch - 2x the number of mps gave best timing cudaDeviceProp prop; HANDLE_ERROR( cudaGetDeviceProperties( &prop, 0 ) ); int blocks = prop.multiProcessorCount; histo_kernel<<<blocks*2,256>>>( dev_buffer, SIZE, dev_histo ); unsigned int histo[256]; HANDLE_ERROR( cudaMemcpy( histo, dev_histo, 256 * sizeof( int ), cudaMemcpyDeviceToHost ) ); // get stop time, and display the timing results HANDLE_ERROR( cudaEventRecord( stop, 0 ) ); HANDLE_ERROR( cudaEventSynchronize( stop ) ); float elapsedTime; HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime, start, stop ) ); printf( "Time to generate: %3.1f ms\n", elapsedTime ); long histoCount = 0; for (int i=0; i<256; i++) { histoCount += histo[i]; } printf( "Histogram Sum: %ld\n", histoCount ); // verify that we have the same counts via CPU for (int i=0; i<SIZE; i++) histo[buffer[i]]--; for (int i=0; i<256; i++) { if (histo[i] != 0) printf( "Failure at %d! Off by %d\n", i, histo[i] ); } HANDLE_ERROR( cudaEventDestroy( start ) ); HANDLE_ERROR( cudaEventDestroy( stop ) ); cudaFree( dev_histo ); cudaFree( dev_buffer ); free( buffer ); return 0; }
__global__ void histo_kernel( unsigned char *buffer, long size, unsigned int *histo ) { // clear out the accumulation buffer called temp // since we are launched with 256 threads, it is easy // to clear that memory with one write per thread __shared__ unsigned int temp[256]; temp[threadIdx.x] = 0; __syncthreads(); // calculate the starting index and the offset to the next // block that each thread will be processing int i = threadIdx.x + blockIdx.x * blockDim.x; int stride = blockDim.x * gridDim.x; while (i < size) { atomicAdd( &temp[buffer[i]], 1 ); i += stride; } // sync the data from the above writes to shared memory // then add the shared memory values to the values from // the other thread blocks using global memory // atomic adds // same as before, since we have 256 threads, updating the // global histogram is just one write per thread! __syncthreads(); atomicAdd( &(histo[threadIdx.x]), temp[threadIdx.x] ); } int main( void ) { unsigned char *buffer = (unsigned char*)big_random_block( SIZE ); // capture the start time // starting the timer here so that we include the cost of // all of the operations on the GPU. if the data were // already on the GPU and we just timed the kernel // the timing would drop from 74 ms to 15 ms. Very fast. cudaEvent_t start, stop; HANDLE_ERROR( cudaEventCreate( &start ) ); HANDLE_ERROR( cudaEventCreate( &stop ) ); HANDLE_ERROR( cudaEventRecord( start, 0 ) ); // allocate memory on the GPU for the file's data unsigned char *dev_buffer; unsigned int *dev_histo; HANDLE_ERROR( cudaMalloc( (void**)&dev_buffer, SIZE ) ); HANDLE_ERROR( cudaMemcpy( dev_buffer, buffer, SIZE, cudaMemcpyHostToDevice ) ); HANDLE_ERROR( cudaMalloc( (void**)&dev_histo, 256 * sizeof( int ) ) ); HANDLE_ERROR( cudaMemset( dev_histo, 0, 256 * sizeof( int ) ) ); // kernel launch - 2x the number of mps gave best timing cudaDeviceProp prop; HANDLE_ERROR( cudaGetDeviceProperties( &prop, 0 ) ); int blocks = prop.multiProcessorCount; histo_kernel<<<blocks*2,256>>>( dev_buffer, SIZE, dev_histo ); unsigned int histo[256]; HANDLE_ERROR( cudaMemcpy( histo, dev_histo, 256 * sizeof( int ), cudaMemcpyDeviceToHost ) ); // get stop time, and display the timing results HANDLE_ERROR( cudaEventRecord( stop, 0 ) ); HANDLE_ERROR( cudaEventSynchronize( stop ) ); float elapsedTime; HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime, start, stop ) ); printf( "Time to generate: %3.1f ms\n", elapsedTime ); long histoCount = 0; for (int i=0; i<256; i++) { histoCount += histo[i]; } printf( "Histogram Sum: %ld\n", histoCount ); // verify that we have the same counts via CPU for (int i=0; i<SIZE; i++) histo[buffer[i]]--; for (int i=0; i<256; i++) { if (histo[i] != 0) printf( "Failure at %d!\n", i ); } HANDLE_ERROR( cudaEventDestroy( start ) ); HANDLE_ERROR( cudaEventDestroy( stop ) ); cudaFree( dev_histo ); cudaFree( dev_buffer ); free( buffer ); return 0; }
注:本文是作者对GPU高性能编程CUDA实战的学习总结。此书的代码可以在下面的链接下载,无需积分哦!
http://download.csdn.net/detail/celerychen2009/6360573