对于2016年浙江高考最后一题的探究

(1)考虑证明当\(k>0,n>k,-a_n<2^{n-k}(|a_k|-2)<a_n\)
\(|a_k|\leq 2\),此时\(2^{n-k}(|a_k|-2)<0<|a_n|\),得证
\(|a_k|>2\)\(|a_n-\frac{a_{n+1}}{2}|\leq 1,2a_n-2\leq a_{n+1}\leq 2a_n+2\)
使用数学归纳法,假设\(2^{n-k}(|a_k|-2)<|a_n|,-a_n<2^{n-k}(|a_k|-2)<a_n\),证明\(-a_{n+1}<2^{n-k+1}(|a_k|-2)<a_{n+1}\)
\(-a_n<2^{n-k}(|a_k|-2),-2a_n<2^{n-k+1}(|a_k|-2)\),和\(2a_n-2\leq a_{n+1}\)相加得到\(-2-a_{n+1}\leq 2^{n-k+1}(|a_k|-2)\)
\(2^{n-k}(|a_k|-2)<a_n,2^{n-k+1}(|a_k|-2)<2a_n\)就是\(-2a_n<-2^{n-k+1}(|a_k|-2)\),和\(2a_n-2\leq a_{n+1}\)相加得到\(-2<-2^{n-k+1}(|a_k|-2)+a_{n+1},2^{n-k+1}(|a_k|-2)<a_{n+1}+2\)
所以\(-2-a_{n+1}\leq 2^{n-k+1}(|a_k|-2)<2+a_{n+1}\),得证
\(k=1\)得证
(2)反证法,假设存在\(a_k\)\(|a_k|>2\),设\(p\)为最小的\(p\)\(|a_p|>2\)
根据前面结论,对于所有\(l>0,|a_{p+l}|>2^l(|a_p|-2)\)
由于\(|a_{p+l}|<(\frac{3}{2})^{p+l}\),对于所有\(l>0\)\(2^l(|a_p|-2)<(\frac{3}{2})^l<(\frac{3}{2})^{p+l},\frac{2^l}{(\frac{3}{2})^{l}}=(\frac{4}{3})^l<\frac{1}{|a_p|-2|}\)
但是当\(l\)是最小的正整数满足\(l>\log_{\frac{4}{3}}\frac{1}{|a_p|-2}\)\((\frac{4}{3})^l>\frac{1}{|a_p|-2}\),矛盾,得证

posted @ 2023-10-12 11:19  celerity1  阅读(14)  评论(0编辑  收藏  举报