Codeforces Round #412 (rated, Div. 2, base on VK Cup 2017 Round 3) C. Success Rate

C. Success Rate
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
You are an experienced Codeforces user. Today you found out that during your activity on Codeforces you have made y submissions, out of which x have been successful. Thus, your current success rate on Codeforces is equal to x / y.

Your favorite rational number in the [0;1] range is p / q. Now you wonder: what is the smallest number of submissions you have to make if you want your success rate to be p / q?

Input
The first line contains a single integer t (1 ≤ t ≤ 1000) — the number of test cases.

Each of the next t lines contains four integers x, y, p and q (0 ≤ x ≤ y ≤ 109; 0 ≤ p ≤ q ≤ 109; y > 0; q > 0).

It is guaranteed that p / q is an irreducible fraction.

Hacks. For hacks, an additional constraint of t ≤ 5 must be met.

Output
For each test case, output a single integer equal to the smallest number of submissions you have to make if you want your success rate to be equal to your favorite rational number, or -1 if this is impossible to achieve.

Example
input
4
3 10 1 2
7 14 3 8
20 70 2 7
5 6 1 1
output
4
10
0
-1
Note
In the first example, you have to make 4 successful submissions. Your success rate will be equal to 7 / 14, or 1 / 2.

In the second example, you have to make 2 successful and 8 unsuccessful submissions. Your success rate will be equal to 9 / 24, or 3 / 8.

In the third example, there is no need to make any new submissions. Your success rate is already equal to 20 / 70, or 2 / 7.

In the fourth example, the only unsuccessful submission breaks your hopes of having the success rate equal to 1.
  1 #include <bits/stdc++.h>
  2 using namespace std;
  3 typedef long long LL;
  4 void gcd(LL a, LL b, LL &d, LL &x, LL &y)
  5 {
  6     if (!b)
  7     {
  8         d = a;
  9         x = 1;
 10         y = 0;
 11     }
 12     else
 13     {
 14         gcd(b, a % b, d, y, x);
 15         y -= x * (a / b);
 16     }
 17 }
 18 LL t, x, y, p, q, g, a, b, c;
 19 LL dealZero(LL t)
 20 {
 21     if (c % t || c / t < 0)
 22         return -1;
 23     return c / t;
 24 }
 25 LL divab(LL a, LL b) //整数相除向小的数取整(负数取整绝对值会变大)
 26 {
 27     double x = double(a) / b;
 28     if (x >= 0)
 29         return (LL)x;
 30     return (LL)(x - 1 + 1e-9);
 31 }
 32 int main()
 33 {
 34     scanf("%lld", &t);
 35     while (t--)
 36     {
 37         scanf("%lld%lld%lld%lld", &x, &y, &p, &q);
 38         //(x+a)/(y+a+b)=p/q     a=? b=? min(a+b)=?(a>=0 && b>=0)
 39         LL t1 = q - p, t2 = -p;
 40         //t1*a + t2*b = p*y - q*x
 41         c = (LL)p * y - (LL)q * x;
 42         if (t1 == 0)
 43         {
 44             printf("%lld\n", dealZero(t2));
 45             continue;
 46         }
 47         if (t2 == 0)
 48         {
 49             printf("%lld\n", dealZero(t1));
 50             continue;
 51         }
 52         gcd(t1, t2, g, a, b); //a*t1+b*t2=g
 53         if (g < 0)
 54             a = -a, b = -b, g = -g;
 55         if (c % g)
 56         {
 57             printf("-1\n");
 58             continue;
 59         }
 60         a *= c / g % (t2 / g);
 61         //b *= c / g;
 62         //************************************这里a,b乘完后后面处理会爆longlong
 63         a = a % (t2 / g);          //将结果先缩小
 64         b = (c - t1 / g * a) / t2; //会爆longlong
 65         //a*t1+b*t2=c
 66         //a*t1+k*t1*t2/g + b*t2 - k*t1*t2/g = c     变动相差一个t1,t2的最小共倍数t1*t2/g
 67         //(a+k*t2/g)*t1 + (b-k*t1/g)*t2=c
 68         //a+k*t2/g>=0 && b-k*t1/g>=0
 69         //t2/g > 0 a>=-k*t2/g ==> a*g/t2>=-k ==> -a*g/t2<=k
 70         //t2/g < 0 a>=-k*t2/g ==> a*g/t2<=-k ==> -a*g/t2>=k
 71         printf("a:%lld t1:%lld b:%lld t2:%lld g:%lld c:%lld\n", a, t1, b, t2, g, c);
 72         LL mink, maxk, hasMink = false, hasMaxk = false;
 73         t1 /= g;
 74         t2 /= g;
 75         if (t2 >= 0)
 76         {
 77             hasMink = true;
 78             mink = divab(-a, t2);
 79         }
 80         else
 81         {
 82             hasMaxk = true;
 83             maxk = divab(-a, t2);
 84         }
 85         //t1/g > 0 ==> b >= k*t1/g ==> b*g/t1 >= k
 86         //t1/g > 0 ==> b >= k*t1/g ==> b*g/t1 <= k
 87         LL tmp = divab(b, t1);
 88         if (t1 >= 0)
 89         {
 90             if (hasMaxk)
 91                 maxk = min(maxk, tmp); //**************************若为负数要向小的数取整
 92             else
 93                 maxk = tmp, hasMaxk = true;
 94         }
 95         else
 96         {
 97             if (hasMink)
 98                 mink = max(mink, tmp);
 99             else
100                 mink = tmp, hasMink = true;
101         }
102         //a+k*t2 + b - k*t1=a+b+k*(t2-t1)
103         if (hasMaxk && hasMink && maxk < mink)
104         {
105             printf("-1\n");
106             continue;
107         }
108         printf("maxk:%lld hasMaxk:%lld mink:%lld hasMink:%lld\n", maxk, hasMaxk, mink, hasMink);
109         LL t = t2 - t1;
110         if (t > 0)
111         {
112             if (hasMink)
113             {
114                 printf("%lld\n", a + b + mink * t);
115                 continue;
116             }
117             if (hasMaxk)
118             {
119                 printf("%lld\n", a + b + min(maxk, 0LL) * t);
120                 continue;
121             }
122         }
123         else
124         {
125             if (hasMaxk)
126             {
127                 printf("%lld\n", a + b + maxk * t);
128                 continue;
129             }
130             if (hasMink)
131             {
132                 printf("%lld\n", a + b + max(mink, 0LL) * t);
133                 continue;
134             }
135         }
136     }
137     return 0;
138 }
AC代码,用拓展gcd算,很容易爆long long,边界处理时一不小心就出错,特别是算k的范围时,由于不是整除,如果是负数要取比这个数小一的数,中间输出未注释
 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 typedef long long LL;
 4 int main()
 5 {
 6     LL t, x, y, p, q;
 7     cin >> t;
 8     while (t--)
 9     {
10         cin >> x >> y >> p >> q;
11         LL L = 0, R = 1e9;
12         while (L < R)
13         {
14             LL mid = (L + R) >> 1;
15             if (p * mid >= x && q * mid >= y && p * mid - x <= q * mid - y)
16                 R = mid;
17             else
18                 L = mid + 1;
19         }
20         if (p * R >= x && q * R >= y && p * R - x <= q * R - y)
21             printf("%lld\n", q * R - y);
22         else
23             printf("-1\n");
24     }
25     return 0;
26 }
二分AC代码

 

posted @ 2017-05-08 19:57  cdongyang  阅读(218)  评论(0编辑  收藏  举报