模版

ACM模板

 

用于简化模运算的定理

欧拉定理 am互质,a^phi(m)%m==1-->m为质数 a^(m-1)%m==1

威尔逊定理 p为素数 (p-1)!%p==p-1==-1

费马定理 p为素数,ap互质,a^(p-1)%p==1

费马小定理 p为素数,a^p%p==a-->(a^p/a)%p==a/a-->a^(p-1)%p==1

am不互质时若m较小可以直接找a^x%m=1,即直接for循环从1开始找x

A^x % m = A^(x%phi(m)+phi(m)) % m (x >= phi(m))

用于化简(a^(b^(c^...))),先算最上面的次方,然后递归回去

 

换底公式 log(a)(b)=log(c)(b)/log(c)(a),当结果超过浮点数范围时用log,负数没有对数

 #pragma comment(linker, "/STACK:102400000,102400000")//手动开大栈区
多次模规律 x=x*x%p;在一定次数后x会不再改变,即x*x%p==x

scanf(“%[^\n]”,s);时记得初始化s[0]=0;否则输入有空行时会WA,且输入空行时返回值为0

an次根:x=pow(a,1.0/n)

处理误差时同时判x*x==a || (x+1)*(x+1)==a (间隔为2x+1,所以基本能处理误差)

 

树上某个点的子树的所有信息dfs进入这个点时已经记录的信息离开这个点时已经记录的信息差集

//multiset s.erase(2)会一次删除所有的 2,若要只删一个应用 s.erase(s.find(2))--易错

多个样例输入 T较大且满足从小到大递推时可以将询问离线出来处理

abs(x)在没有 using namespace std;的情况下超过 long long 会出错

gcd计数相关:莫比乌斯反演,容斥原理,欧拉函数

递归超过 1e5层左右就会爆栈 RE,将递归改成手写栈

 

 

 1 C(n,k+1)=C(n,k)*(n-k)/(k+1)
 2 
 3 //O(n)递推
 4 
 5 C(n,k)=n!/(k!*(n-k!))=n*(n-1)*...*(n-k+1){k个相乘}/k! (k<=n)
 6 
 7 C(n,k)=C(n,n-k)
 8 
 9 C(n,k)=C(n-1,k)+C(n-1,k-1)
10 
11 {杨辉等式,杨辉三角形的对称性}
12 
13 C(n,0)+C(n,1)+...+C(n,n-1)+C(n,n)=2^n {二项式定理}
14 
15 C(n,0)+C(n+1,1)+C(n+2,2)+.+C(n+r,r)=C(n+r+1,r)//把 C(n,0)看出 C(n+1,0)不断往后合并
16 
17 可重复组合(隔板法)
18 
19 从 n个元素中可重复地选 k个,n个盒子放 k个相同的球,选法为
20 
21 C(n+k-1,n-1)=C(n+k-1,k)
22 
23 有重复元素排列
24 
25 n个元素中有 n1个相同,n2个相同。。。
26 
27 n!/(n1!*n2!*...*nk!)
28 
29 圆排列
30 
31 从 n个不同元素中选 k个不分首位围成一个圆圈,方案数为
32 
33 A(n,k)/k 如果 k==n,则有 n!/n=(n-1)!34 
35 条件排列
36 
371,2,3,4,5五个数进行排列,要求 4排在 2前面
38 
39 方法 1:先排 135,3!种,再插 2,4,先插 4,有四种插法,对于每种插法,2有 4,3,2,1种插法,所以种数=3!*10=60
40 
41 方法 2:不考虑 2,4的全排列,共有 5!种,2和 4的位置先后分布情况各半,所以种数=5!/2=60
42 
43 错位排列
44 
45 {a1,a2,...,an},ai不放在第 i个位置的种数
46 
47 Dn=n!*(1-1/1!+1/2!-1/3!+1/4!-...!(-1)^n/n!)
48 
49 f(n)=(n-1)*(f(n-1)+f(n-2)) 递推式
组合公式
 1 一、球相同,盒子相同,且盒子不能空
 2 
 3 结论 n个相同的球放入m个相同的盒子(n≥m),不能有空盒时的放法种数等于n分解为m个数的和的种数.
 4 
 5 二、球相同,盒子相同,且盒子可以空
 6 
 7 结论 n个相同的球放入m个相同的盒子(n≥m),可以有空盒时的放法种数等于将n分解为m个、(m-1)个、
 8 
 9 (m-2)个、…、2 个、1 个数的和的所有种数之和.
10 
11 三、球相同,盒子不同,且盒子不能空
12 
13 结论 n个相同的球放入m个不同的盒子中(n≥m),不能有空盒的放法数 C(n-1,m-1).
14 
15 四、球相同,盒子不同,且盒子可以空
16 
17 结论 n个相同的球放入m个不同的盒子中(n≥m),可以有空盒的放法数 C(n+m-1,m-1).
18 
19 五、球不同,盒子相同,且盒子不能空
20 
21 .
22 
23 递推式:S(n,m)=S(n-1,m-1)+m*S(n-1,m)
24 
25 结论 n个不同的球放入m个相同的盒子中(n≥m),不能有空盒的放法种数等于n个不同的球分成m堆的种
26 
27 数.
28 
29 六、球不同,盒子相同,且盒子可以空
30 
31 结论 n个不同的球放入m个相同的盒子中(n≥m),可以有空盒的放法种数等于将n个不同的球分成m堆、(m
32 
331)堆、(m-2)堆、…、2 堆、1 堆的所有种数之和.
34 
35 七、球不同,盒子不同,且盒子不能空
36 
37 结论 n个不同的球放入m个不同的盒子中,不能有空盒的放法种数等于n个不同的球分成m堆的种数乘以m!.
38 
39 八、球不同,盒子不同,且盒子可以空
40 
41 结论 n个不同的球放入m个不同的盒子中(n≥m),可以有空盒的放法种数等于m^n种.
球盒问题 

 n个不同的球和 m个不同球按原来顺序穿插起来,即将 n个球看成一样的,m个也是一样的,然后进行排列,

(n+m)!/(n!m!)中插法,即将 n个球按原来顺序放入(m+1)个盒子

 1 前几项:1 1 2 5 14 42 132 429 1430 4862 16796 58786 2080127429002674440969484535357670129644790
 2 
 3 1.递归公式
 4 
 5 h(n) = h(n-1)*(4*n-2) / (n+1);
 6 
 7 2.递归公式
 8 
 9 f(n)=f(0)*f(n-1)+f(1)*f(n-2)+...+f(n-2)*f(1)+f(n-1)*f(0){累加 f(i)*f(n-i-1),i从 0到 n-1}
10 
11 3.组合公式 1
12 
13 f(n)=C(2*n,n)/(n+1)
14 
15 4.组合公式 2
16 
17 f(n)=C(2*n,n)-C(2*n,n-1)
18 
19 用于
20 
21 1 二叉数形态的计数
22 
23 2 火车进站后的出站顺序种数,乘法加括号的运算顺序种数
24 
25 3 将凸 n边形用 n-3条不相交的对角线分成 n-2个互相没有重叠的三角形的分法
26 
27 4
28 
29 n个 A和 n个 B排成一排,在任何位置 B的个数不超过 A的个数的排列种数
Catalan(栈相关计数)
 1 假设 x为奇数,y为偶数,则 z为奇数,2z与 2x的最大公因数为 2,2z和 2x可分别写作
 2 
 3 2z = (z + x) + (z - x)
 4 
 5 2x = (z + x) - (z - x)
 6 
 7 那么跟据最大公因数性质,z + x和 z - x的最大公因数也为 2,又因为:
 8 
 9 (z + x)(z - x) = y^2,两边同除以 4得:
10 
11 ((z + x) / 2)((z - x) / 2) = (y / 2)^2
12 
13 故可令:
14 
15 z + x = 2m^2, z - x = 2n^2
16 
17 其中 z = m + n, x = m - n(m与 n互质)
18 
19 则有:
20 
21 y2 = z^2 - x^2 = (2m)^2 (2n)^2 = 4m^2 n^2
22 
23 即 y = 2mn。
24 
25 综上所述,可得到下式:
26 
27 x = m^2 - n^2, y = 2mn, z = m^2 + n^2. (m, n为任意自然数)
//勾股数性质

#ifdef ONLINE_JUDGE

#else

freopen("in","r",stdin);

freopen("out","w",stdout);

#endif

 1 struct node
 2 {
 3 int d,i;
 4 }d[110];
 5 struct cmp
 6 {
 7 bool operator ()(const node &a, const node &b)
 8 {
 9 return a.d<b.d || a.d==b.d && a.i>b.i;
10 }
11 };
12 priority_queue<node, vector<node>, cmp>q;
13 priority_queue<int, vector<int>, less<int> >q;
14 priority_queue<int, vector<int>, greater<int> >q;
//优先队列重载 cmp
 1 template <class T>  
 2 bool scanff(T &ret)
 3 { //Faster Input:short,int,long long,double,float
 4     char c; int sgn; T bit=0.1;  
 5     if(c=getchar(),c==EOF) return 0;  
 6     while(c!='-'&&c!='.'&&(c<'0'||c>'9')) c=getchar();  
 7     sgn=(c=='-')?-1:1;  
 8     ret=(c=='-')?0:(c-'0');  
 9     while(c=getchar(),c>='0'&&c<='9') ret=ret*10+(c-'0');  
10     if(c==' '||c=='\n') { ret*=sgn; return 1; }  
11     while(c=getchar(),c>='0'&&c<='9') ret+=(c-'0')*bit,bit/=10;  
12     ret*=sgn;  
13     return 1;  
14 } 
fast input
 1 template <class T>
 2 void printff(T ret)
 3 { //Faster Output:short,int,long long
 4     char s[22];
 5     if(ret<0) { printf("-");ret=-ret; }
 6     int len=0;
 7     while(ret) { s[++len]=ret%10+'0';ret/=10; }
 8     if(!len) s[++len]='0';
 9     while(len) printf("%c",s[len--]);
10 }
fast output 
 1 void phi_table(int *phi,int *f,int *p,int &pn)
 2 {
 3     phi[1]=1;pn=0;
 4     int k;
 5     for(int i=2;i<N;i++)
 6     {
 7         if(!f[i]) { p[pn++]=f[i]=i;phi[i]=i-1; }
 8         for(int j=0;j<pn&&(k=p[j]*i)<N;j++)
 9         {
10             f[k]=p[j];
11             if(f[i]==p[j]) { phi[k]=phi[i]*p[j]; break; }
12             else phi[k]=phi[i]*(p[j]-1);
13         }
14     }
15     //for(int i=2;i<=N;i++) phi[i]+=phi[i-1];//累加
16 }
//欧拉函数线性筛法,phi为欧拉数组,f为素数标记数组,p为素数数组O(n) 
1 void fa(int n,int &dn,int*d)        
2 {
3     dn=0;
4     int m=sqrt(n)+0.5;
5     for(int i=1;i<=m;i++) if(n%i==0) { d[dn++]=i;d[dn++]=n/i; }
6     if(m*m==n) dn--;
7     sort(d,d+dn);
8 }
//找n所有约数并从小到大存到d数组O(n^(1/2))
 1 void fa(int n,int &pn,int *p)
 2 {
 3     pn=0;
 4     int m=sqrt(n)+0.5;
 5     for(int i=2;i<=m;i++) if(n%i==0)
 6     {
 7         p[pn]=1;
 8         while(n%i==0)
 9         {
10             p[pn]*=i;
11             n/=i;
12         }
13         pn++;
14     }
15     if(n!=1) p[pn++]=n;
16 }
//找n所有质因子并将素数从小到大存最高幂次到d数组O(n^(1/2))
 1 void Prin()            //O(nlogn)
 2 {
 3     memset(prin,0,sizeof(prin));
 4     for(int i=2;i<N;i++) if(!prin[i])
 5         for(int j=i;j<N;j+=i)
 6         {
 7             int t=j;
 8             while(t%i==0)
 9             {
10                 prin[j]++;
11                 t/=i;
12             }
13         }
14 }
//筛出1到N中每个数质因子的个数,如24=2*2*2*3,则prin[24]=4,也可以改为筛质因子
 1 template<class T>
 2 T gcd(T a,T b)
 3 {
 4     while(b)
 5     {
 6         T r=b;
 7         b=a%b;
 8         a=r;
 9     }
10     return a;
11 }
//非递归gcd O(logn)
 1 LL slove(LL a,LL b)
 2 {
 3     LL g = gcd(b/a,a);  
 4     while(g!=1)
 5     {
 6         a = a/g;  
 7         g = gcd(b/a, a);  
 8         }
 9     return b/a;
10 }
//返回最小的ans满足lcm(a,ans)=b
 1 LL quick_mod(LL t,LL n)
 2 {
 3     LL ans=1;
 4     while(n)
 5     {
 6         if(n&1) ans=ans*t%mod;
 7         t=t*t%mod;
 8         n>>=1;
 9     }
10     return ans;
11 }
//t^n%mod二分快速幂O(log(n))

//欧拉函数为 phi(n)=小于 n且与 n互质的数的个数,这些数的和为 n*phi(n)/2

证明 共有 m 个与 n 互质的数, m  n 的欧拉函数, m=φ(n)

 ans=∑i=0,m−1 ai…(1) ,gcd(ai,n)=1&& ai<n;

可知 gcd(ai,n−ai)=1;

 ans=∑i=0,m−1 (n−ai)…(2) , gcd(ai,n−ai)=1 && n−ai<n;

(1) + (2)  2∗ans=n∗m,  ans=n∗φ(n)/2;

欧拉函数引理

1.p为素数 phi(p)=p-1

2.p为素数 phi(p^a)=(p-1)*p^(a-1)=p^a*(1-1/p)

3.a,b互质 phi(a*b)=phi(a)*phi(b)

n=p1^a1*p2^a2*...*pk^ak

phi(n)=p1^a1*(1-1/p1)*p2^a2*(1-1/p2)*...*pk^ak*(1-1/pk)=n*(1-1/p1)*(1-1/p2)*...*(1-1/pk)

 1 int euler(int n)
 2 {
 3     int ans = n;
 4     for (int i = 2; i * i <= n; i++)
 5         if (n % i == 0)
 6         {
 7             ans = ans / i * (i - 1);
 8             while (n % i == 0)
 9                 n /= i;
10         }
11     if (n > 1)
12         ans = ans / n * (n - 1);
13     return ans;
14 }
//O(sqrt(n))求单个数的欧拉函数,phi[n]=n/pi*(pi-1)
 1 void phi_table(int *phi, int *f, int *p, int &pn)
 2 {
 3     phi[1] = 1;
 4     pn = 0;
 5     int k;
 6     for (int i = 2; i < N; i++)
 7     {
 8         if (!f[i])
 9         {
10             p[pn++] = f[i] = i;
11             phi[i] = i - 1;
12         }
13         for (int j = 0; j < pn && (k = p[j] * i) < N; j++)
14         {
15             f[k] = p[j];
16             if (f[i] == p[j])
17             {
18                 phi[k] = phi[i] * p[j];
19                 break;
20             }
21             else
22                 phi[k] = phi[i] * (p[j] - 1);
23         }
24     }
25     //for(int i=2;i<=N;i++) phi[i]+=phi[i-1];//累加
26 }
//欧拉函数线性筛法,phi为欧拉数组,f为素数标记数组,p为素数数组 O(n)
 1 void prime(int &pn, int *p, bool *vis)
 2 {
 3     pn = 0;
 4     for (int i = 2; i < N; i++)
 5     {
 6         if (!vis[i])
 7             p[pn++] = i;
 8         for (int j = 0; j < pn && i * p[j] < N; j++)
 9         {
10             vis[i * p[j]] = 1;
11             if (i % p[j] == 0)
12                 break;
13         }
14     }
15 }
//素数线性筛法,p为素数数组,vis为素数标记数组 O(n)
 1 int vis[N / 31], pn, p[N / 10];
 2 inline bool judge(int x) { return vis[x >> 5] & (1 << (x & 31)); }
 3 inline void setbit(int x) { vis[x >> 5] |= 1 << (x & 31); }
 4 void init()
 5 {
 6     pn = 0;
 7     memset(vis, 0, sizeof(vis));
 8     for (int i = 2; i < M; i++)
 9     {
10         if (!judge(i))
11             p[pn++] = i;
12         for (int j = 0; p[j] * i < M; j++)
13         {
14             setbit(i * p[j]);
15             if (i % p[j] == 0)
16                 break;
17         }
18     }
19 }
//位压素数筛,省内存
 1 int prime(int a, int b)
 2 {
 3     memset(vis, 1, sizeof(vis));
 4     for (int i = 0; i < pn && (LL)p[i] * p[i] <= b; i++)
 5     {
 6         int x = a / p[i] + (a % p[i] != 0);
 7         if (x == 1)
 8             x++;
 9         for (LL j = (LL)x * p[i]; j <= b; j += p[i])
10             vis[j - a] = 0; //,printf("%d\n",j);
11     }
12     int ans = 0;
13     for (LL i = 0; i + a <= b; i++)
14         ans += vis[i];
15     if (a == 1)
16         ans--;
17     return ans;
18 }
//区间素数筛
 1 LL cal(LL p, LL n)
 2 {
 3     p %= mod;
 4     if (p == 1)
 5         return (n + 1) % mod;
 6     LL inv = quick_mod(p - 1, mod - 2);
 7     LL t = quick_mod(p, n);
 8     if (t * p % mod != 1)
 9         return (t * p % mod - 1) * inv % mod;
10     return (t - 1) * inv % mod * t % mod;
11 }
//所有约数的和=(p[i]^(e[i]+1) - 1)/(p[i]-1) ,0<=i<pn,累乘 //计算(p^0+p^1+...+p^n)%mod,p==1时和 p^(n+1)%mod==1时会出错
 1 int log_mod(int a, int b)
 2 {
 3     int m, v, e = 1;
 4     m = (int)sqrt(mod + 0.5);
 5     v = Inv(quick_mod(a, m));
 6     map<int, int> x;
 7     x[1] = 0;
 8     for (int i = 1; i < m; i++)
 9     {
10         e = (LL)e * a % mod;
11         if (!x.count(e))
12             x[e] = i;
13     }
14 
15     for (int i = 0; i < m; i++)
16     {
17         if (x.count(b))
18             return i * m + x[b];
19         b = (LL)b * v % mod;
20     }
21     return -1;
22 }
//离散对数,解 a^x%mod=b,返回最小的
 1 void gcd(LL a, LL b, LL &d, LL &x, LL &y)
 2 {
 3     if (!b)
 4     {
 5         d = a;
 6         x = 1;
 7         y = 0;
 8     }
 9     else
10     {
11         gcd(b, a % b, d, y, x);
12         y -= a / b * x;
13     }
14 }
//拓展欧几里得求 ax+by=g=gcd(a,b)的解(x,y),通解为(x+kb/g,y+ka/g) //则 ax+by=c(g|c) 的解为(xc/g,yc/g)
 1 LL equation(LL a, LL b, LL r, LL &x, LL &y)
 2 {
 3     LL g;
 4     gcd(a, b, g, x, y); //求出 ax+by==g
 5     if (r % g)
 6         return 0; //无解
 7     x *= r / g;
 8     y *= r / g;
 9     return g > 0 ? g : -g; //返回 gcd
10 }
//解方程 ax+by==r,r==0时按需特殊处理 通解(x+k*b/g,y-k*a/g);
 1 int a, b, c, x0, x2, y0, y2;
 2 LL solve(LL a, LL b, LL c, LL x0, LL x2, LL y0, LL y2)
 3 {
 4     if (a < 0 && b < 0)
 5         a = -a, b = -b, c = -c;
 6     if (!b || a < 0 && b > 0)
 7         swap(a, b), swap(x0, y0), swap(x2, y2);
 8     if (!a && !b)
 9     {
10         if (c)
11             return 0;
12         return (x2 - x0 + 1LL) * (y2 - y0 + 1LL);
13     }
14     if (!a)
15     {
16         if (c % b || y0 > -c / b || y2 < -c / b)
17             return 0;
18         return x2 - x0 + 1;
19     }
20     LL g, x, y;
21     g = equation(a, b, -c, x, y);
22     if (!g)
23         return 0;
24 
25     LL aa = abs(a / g), bb = abs(b / g);
26     x0 += ((x % bb + bb) % bb - (x0 % bb + bb) % bb + bb) % bb;
27     x2 -= ((x2 % bb + bb) % bb - (x % bb + bb) % bb + bb) % bb;
28     y0 += ((y % aa + aa) % aa - (y0 % aa + aa) % aa + aa) % aa;
29     y2 -= ((y2 % aa + aa) % aa - (y % aa + aa) % aa + aa) % aa;
30     if (x0 > x2 || y0 > y2)
31         return 0;
32     x0 = (-c - a * x0) / b;
33     //a*x0注意溢出
34     x2 = (-c - a * x2) / b;
35     if (b > 0)
36         swap(x0, x2);
37     x0 = max(x0, y0);
38     x2 = min(x2, y2);
39     if (x0 > x2)
40         return 0;
41     return (x2 - x0) / aa + 1;
42 }
//ax+by+c=0 在 x0<=x<=x2 y0<=y<=y2范围内的整数解个数
 1 LL multi_equation(int n, int *r, int *m)
 2 {
 3     LL x, y, g, lcm, ans;
 4     lcm = m[0];
 5     ans = r[0];
 6     for (int i = 1; i < n; i++)
 7     {
 8         g = equation(lcm, -m[i], r[i] - ans, x, y);
 9         if (!g)
10             return -1; //无解
11         ans += x * lcm;
12         lcm *= m[i] / g;
13         ans %= lcm;
14         //注意溢出
15     }
16     if (ans % lcm == 0)
17         return lcm; //结果为 0时答案为 lcm
18     return (ans + lcm) % lcm;
19 }
//类似中国剩余定理,可处理 m数组不互质的情况
1 LL Inv(LL a, LL n) //O(logn)
2 {
3     LL g, x, y;
4     gcd(a, n, g, x, y);
5     return g == 1 ? (x + n) % n : -1;
6 }
//逆元求(a^b-c)/d%p时当 a^b-c==0时(a^b-c)*inv(d)==0会出错,需特殊处理
//逆元,a/b%mod=a*b^-1%mod,f(x)=inv(x,mod)或 f(x)=quick_mod(x,mod-2,mod),mod需是质数
//若 a,m互质,r=a/b%m=a*inv(b)%m,否则 r=a/b%m=a%(m*b)/b 可以算 a%(m*b)但算不了 a/b时用
//mod为素数线性求逆元:inv(x)=-(mod/x)*inv(mod%x)=(mod– mod/x)*inv(mod%x)%mod
 1 LL quick_mod(LL t, LL n)
 2 {
 3     t %= mod;
 4     LL ans = 1;
 5     while (n)
 6     {
 7         if (n & 1)
 8             ans = ans * t % mod;
 9         t = t * t % mod;
10         n >>= 1;
11     }
12     return ans;
13 }
//t^n%mod二分快速幂 O(log(n))
 1 LL fac[N];
 2 LL Inv(LL x)
 3 {
 4     return quick_mod(x, mod - 2);
 5 }
 6 void init()
 7 {
 8     //要先执行
 9     fac[0] = 1;
10     for (int i = 1; i < N; i++)
11         fac[i] = fac[i - 1] * i % mod;
12     //阶乘模
13 }
14 //若 mod不为质数且 n*m较小可以考虑打 n*m的 C[n][m]二维表
15 LL Cnm(int n, int m)
16 {
17     if (n < m || n < 0 || m < 0)
18         return 0;
19     return fac[n] * Inv(fac[m] * fac[n - m] % mod) % mod;
20 }
//求 n,m小于 N的组合数 C(n,m)%mod O(nlogn)
 1 LL Lucas(LL n, LL m)
 2 {
 3     if (n < m || n < 0 || m < 0)
 4         return 0;
 5     LL ans = 1;
 6     while (n && m)
 7     {
 8         ans = ans * Cnm(n % mod, m % mod) % mod; //这儿 Cnm的求逆不可先处理,会超时
 9         n /= mod;
10         m /= mod;
11     }
12     return ans;
13 }
14 LL Lucas(LL n, LL m)
15 //递归
16 {
17     if (m == 0)
18         return 1;
19     else
20         return (Cnm(n % mod, m % mod) * Lucas(n / mod, m / mod)) % mod;
21 }
/*首先给出这个 Lucas定理:
A、B是非负整数,p是质数。AB写成 p进制:A=a[n]a[n-1]...a[0],B=b[n]b[n-1]...b[0]。
则组合数 C(A,B)与 C(a[n],b[n])*C(a[n-1],b[n-1])*...*C(a[0],b[0]) mod p同余
即:Lucas(n,m,p)=c(n%p,m%p)*Lucas(n/p,m/p,p) */
//求 C(n,m)%mod mod最大为 10^5。a,b可以很大!
  1 //对每个数分解质因子和次幂
  2 int pn, p[N], vis[N], d[N][10], e[N][10], dn[N];
  3 void init()
  4 {
  5     pn = 1;
  6     memset(vis, 0, sizeof(vis));
  7     memset(e, 0, sizeof(e));
  8     memset(dn, 0, sizeof(dn));
  9     for (int i = 2; i < N; i++)
 10         if (!vis[i])
 11         {
 12             p[pn] = i;
 13             for (int j = i; j < N; j += i)
 14             {
 15                 vis[j] = 1;
 16                 int &n = dn[j];
 17                 d[j][n] = i;
 18                 int x = j;
 19                 while (x % i == 0)
 20                     x /= i, e[j][n]++;
 21                 n++;
 22             }
 23             vis[i] = pn++;
 24         }
 25 }
 26 
 27 int c[N];
 28 inline void add(int n, int x)
 29 {
 30     if (!x)
 31         return;
 32     for (int i = 0; i < dn[n]; i++)
 33     {
 34         int id = vis[d[n][i]];
 35         c[id] += x * e[n][i];
 36     }
 37 }
 38 //x个组合数相乘求模,mod可不为质数,n不能太大,复杂度 x*log(n)+n*log(p)
 39 int bit[N];
 40 inline int sum(int x)
 41 {
 42     int res = 0;
 43     while (x > 0)
 44         res += bit[x], x -= x & -x;
 45     return res;
 46 }
 47 inline void update(int x, int y, int d)
 48 {
 49     if (!d)
 50         return;
 51     while (x <= n)
 52         bit[x] += d, x += x & -x;
 53     y++;
 54     while (y <= n)
 55         bit[y] -= d, y += y & -y;
 56 }
 57 int vv[n];
 58 inline void Cnm(int n, int m)
 59 {
 60     vv[n]++;
 61     vv[m]--;
 62     vv[n - m]--;
 63 }
 64 LL cal()
 65 {
 66     LL ans = 1;
 67     for (int i = 2; i <= n; i++)
 68         update(1, i, vv[i]);
 69     for (int i = 2; i <= n; i++)
 70         add(i, sum(i));
 71     for (int i = 1; i < pn && p[i] <= n; i++)
 72         if (c[i])
 73             ans = ans * quick_mod(p[i], c[i]) % mod;
 74     return ans;
 75 }
 76 
 77 //单个组合数取 mod,mod可不为质数 复杂度 n*log(p)
 78 LL Cnm(int n, int m)
 79 {
 80     if (n < m || n < 0 || m < 0)
 81         return 0;
 82     m = min(m, n - m);
 83     LL ans = 1;
 84     memset(c, 0, sizeof(c));
 85     for (int i = n, j = m; j > 0; i--, j--)
 86     {
 87         add(i, 1);
 88         add(j, -1);
 89     }
 90     for (int i = 1; i < pn; i++)
 91         if (c[i])
 92             ans = ans * quick_mod(p[i], c[i], mod) % mod;
 93     return ans;
 94 }
 95 int c[N], vv[N];
 96 inline void add(int n, int x)
 97 {
 98     if (!x)
 99         return;
100     for (int i = 0; i < dn[n]; i++)
101     {
102         int id = vis[d[n][i]];
103         c[id] += x * e[n][i];
104     }
105 }
大组合数求模
 1 int c[N][N], fac[N], part[N][N];
 2 void init()
 3 {
 4     memset(c, 0, sizeof(c));
 5     c[0][0] = fac[0] = 1;
 6     for (int i = 1; i < N; i++) //杨辉三角 Cnm递推
 7     {
 8         fac[i] = (LL)fac[i - 1] * i % mod;
 9         c[i][0] = 1;
10         for (int j = 1; j <= i; j++)
11             c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;
12     }
13     //集合划分,part[i][j]表示 i个不同的元素划分成 j个相同组(i个不同球放到 j个相同盒子,不能有空盒,
14     //可以有空盒的为前缀和),递推式 S(n,m)=S(n-1,m-1)+m*S(n-1,m)
15     memset(part, 0, sizeof(part));
16     part[1][1] = 1;
17     for (int i = 2; i < N; i++)
18         for (int j = 1; j <= i; j++)
19             part[i][j] = (part[i - 1][j] * j + part[i - 1][j - 1]) % mod;
20 }
//集合划分,杨辉三角递推
 1 typedef unsigned int UI;
 2 const int HASH=100007;
 3 char e[N][20],w[N][20];
 4 struct Hash
 5 {
 6     int *head, *next, n;
 7     Hash()
 8     {
 9         head = new int[HASH];
10         next = new int[N];
11         n = 1;
12         memset(head, 0, sizeof(head));
13     }
14     ~Hash()
15     {
16         delete[] head;
17         delete[] next;
18     }
19     UI hash(char *s)
20     {
21         UI ans = 0;
22         for (int i = 0; s[i]; i++)
23             ans = s[i] + ans * 101;
24         return ans % HASH;
25     }
26     int hash(int s) { return s % HASH; }
27     bool cmp(char *a, char *b) { return !strcmp(a, b); }
28     bool cmp(int a, int b) { return a == b; }
29     bool insert(int s)
30     {
31         int h = hash(e[s]);
32         int u = head[h];
33         while (u)
34         {
35             //当插入元素中不会有重复时可不要此循环
36             if (cmp(e[u], e[s]))
37                 return 0;
38             u = next[u];
39         }
40         next[s] = head[h];
41         head[h] = s;
42         return 1;
43     }
44     int find(char *s)
45     {
46         int h = hash(s);
47         int u = head[h];
48         while (u)
49         {
50             if (cmp(e[u], s))
51                 return u;
52             u = next[u];
53         }
54         return 0;
55     }
56 };
//hash模板,当 e数组较大时要开到外面,可用于求四元方程 a+b+c+d=0的解,状态标记 //可用于单词表查找,查找单词表中某单词是否可以由另两个单词合成(1~len-1拆分查找)
 1 const LL base=1e18;
 2 const LL MOD=1e9;
 3 struct int128
 4 {
 5     LL a, b;
 6     //a为低位
 7     int128(LL x = 0, LL y = 0)
 8     {
 9         a = x;
10         b = y;
11     }
12     int128 operator+(const int128 &x) const
13     {
14         return int128(a + x.a, b + x.b);
15     }
16     int128 operator-(const int128 &x) const
17     {
18         return int128(a - x.a, b - x.b);
19     }
20     int128 operator*(const int128 &x) const //相乘结果范围为[-(2^63)*1e18,(2^63-1)*1e18]
21     {
22         LL x0 = a % MOD, x1 = a / MOD;
23         LL y0 = x.a % MOD, y1 = x.a / MOD;
24         int128 c;
25         c.a = x0 * y0;
26         c.b = x1 * y1;
27         c.a += x0 * y1 % MOD * MOD;
28         c.b += x0 * y1 / MOD;
29         c.a += x1 * y0 % MOD * MOD;
30         c.b += x1 * y0 / MOD;
31         return c;
32     }
33     int128 operator/(const LL &x) const
34     {
35         LL ans, r, t = a, e = base / 10;
36         ans = b / x;
37         r = b % x;
38         for (int i = 17; i >= 0; i--, e /= 10)
39         {
40             ans = ans * 10 + (r * 10 + t / e) / x;
41             r = (r * 10 + t / e) % x;
42             t %= e;
43         }
44         return int128(ans);
45     }
46     int128 operator%(const LL &x) const
47     {
48         LL ans, t = a, e = base / 10;
49         ans = b % x;
50         for (int i = 17; i >= 0; i--, e /= 10)
51         {
52             ans = (ans * 10 + t / e) % x;
53             t %= e;
54         }
55         return int128(ans);
56     }
57 };
58 
59  
60 void print(int128 x)
61 {
62     if (x.b)
63         printf("%lld%018lld", x.b, x.a);
64     else
65         printf("%lld", x.a);
66 }
//大整数相关 //手动模拟__int28
 1 const int base=10;
 2 int largediv(char*a,char*b,char*ans)
 3 {
 4     int j = 0, la = strlen(a), lb = strlen(b), l = 0;
 5     while (la - j >= lb)
 6     {
 7         int t = 0;
 8         while ((j > 0 && a[j - 1] != '0') || strncmp(a + j, b, lb) >= 0)
 9         {
10             t++;
11             for (int i = lb - 1; i >= 0; i--)
12             {
13                 a[i + j] -= b[i] - '0';
14                 if (a[i + j] < '0')
15                 {
16                     a[i + j] += base;
17                     a[i + j - 1]--;
18                 }
19             }
20         }
21         j++;
22         ans[l++] = t + '0';
23         if (l == 0 && ans[l] == '0')
24             l--;
25     }
26     if (!l)
27         ans[l++] = '0';
28     ans[l] = 0;
29     int x = 0;
30     while (x < la && a[x] == '0')
31         x++;
32     if (x == la)
33         x--;
34     return x;
35 }
//大整数除法或求模,商为 ans(可能会有一个前导 0,输出要处理,注意结果为 0),余数为 a+x
 1 struct Fraction
 2 {
 3     LL num;
 4     LL den;
 5     Fraction(LL num = 0, LL den = 1)
 6     {
 7         if (den < 0)
 8         {
 9             num = -num;
10             den = -den;
11         }
12         assert(den != 0);
13         LL g = __gcd(abs(num), den);
14         this->num = num / g;
15         this->den = den / g;
16     }
17     Fraction operator+(const Fraction &x) const
18     {
19         return Fraction(num * x.den + den * x.num, den * x.den);
20     }
21     Fraction operator-(const Fraction &x) const
22     {
23         return Fraction(num * x.den - den * x.num, den * x.den);
24     }
25     Fraction operator*(const Fraction &x) const
26     {
27         return Fraction(num * x.num, den * x.den);
28     }
29     Fraction operator/(const Fraction &x) const
30     {
31         return Fraction(num * x.den, den * x.num);
32     }
33     bool operator<(const Fraction &x) const
34     {
35         return num * x.den < den * x.num;
36     }
37     bool operator==(const Fraction &x) const
38     {
39         return num * x.den == den * x.num;
40     }
41 };
//分数类
  1 struct bigint
  2 {
  3     int *a;
  4     //a[0]存长度
  5     static const int maxlen = 1e4 + 10;
  6     static const int basel = 8;
  7     static const int base = 1e9;
  8     bigint() { a = new int[maxlen]; }
  9     ~bigint() { delete[] a; }
 10     //输出大整数 a,base不一样时记得改 04d
 11     void print()
 12     {
 13         int n = a[0];
 14         printf("%d", a[--n]);
 15         for (--n; n; n--)
 16             printf("%09d", a[n]);
 17         printf("\n");
 18     }
 19     //将正序的字符串 x转为 10^(basel+1)进制逆序大整数 a
 20     bigint &trans(char *x)
 21     {
 22         int lx = strlen(x);
 23         int &la = a[0] = 1;
 24         for (int i = lx - 1; i >= 0;)
 25         {
 26             int t = 0, k = i - (basel < i ? basel : i);
 27             for (int j = k; j <= i; j++)
 28                 t = t * 10 + x[j] - '0';
 29             i = k - 1;
 30             a[la++] = t;
 31         }
 32         return *this;
 33     }
 34     bool equal(int x) { return a[0] == 2 && a[1] == x; }
 35     //<base的整数转为大整数
 36     bigint &intTobig(int x)
 37     {
 38         a[0] = 2;
 39         a[1] = x;
 40         return *this;
 41     }
 42     bigint &copy(bigint & b)
 43     {
 44         memcpy(a, b.a, sizeof(a[0]) * b.a[0]);
 45         return *this;
 46     }
 47     void swap(bigint & b)
 48     {
 49         int *tmp = a;
 50         a = b.a;
 51         b.a = tmp;
 52     }
 53     bigint &add(bigint & tb, bigint & tans)
 54     {
 55         int *b = tb.a, *ans = tans.a;
 56         int l = max(a[0], b[0]);
 57         memset(ans, 0, sizeof(a[0]) * (l + 1));
 58         for (int i = 1; i < l; i++)
 59         {
 60             if (i >= a[0])
 61                 a[i] = 0;
 62             if (i >= b[0])
 63                 b[i] = 0;
 64             ans[i] += a[i] + b[i];
 65             ans[i + 1] += ans[i] / base;
 66             ans[i] %= base;
 67         }
 68         ans[0] = (ans[l] ? l + 1 : l);
 69         return tans;
 70     }
 71     bigint &minus(bigint & tb, bigint & tans)
 72     {
 73         int *b = tb.a, *ans = tans.a;
 74         memset(ans, 0, sizeof(int) * (a[0] + 1));
 75         for (int i = 1; i < a[0]; i++)
 76         {
 77             if (i >= b[0])
 78                 b[i] = 0;
 79             ans[i] += a[i] - b[i];
 80             if (ans[i] < 0)
 81             {
 82                 ans[i] += base;
 83                 ans[i + 1]--;
 84             }
 85         }
 86         ans[0] = a[0];
 87         while (ans[0] > 2 && !ans[ans[0] - 1])
 88             ans[0]--;
 89         return tans;
 90     }
 91     bigint &mul(bigint & tb, bigint & tans)
 92     {
 93         int *b = tb.a, *ans = tans.a;
 94         memset(ans, 0, sizeof(int) * (a[0] + b[0]));
 95         for (int i = 1; i < a[0]; i++)
 96         {
 97             for (int j = 1; j < b[0]; j++)
 98             {
 99                 LL t = ans[i + j - 1] + (LL)a[i] * b[j];
100                 ans[i + j] += t / base;
101                 ans[i + j - 1] = t % base;
102             }
103         }
104         int &l = ans[0];
105         l = a[0] + b[0] - 2;
106 
107         while (l > 1 && !ans[l])
108             l--;
109         l++;
110         return tans;
111     }
112     //大整数除法或求模,被除数<=Base
113     int div(int b, bigint &tans)
114     {
115         int *ans = tans.a;
116         ans[0] = 1;
117         ans[ans[0]++] = 0;
118         LL sum = 0, first = 1;
119         for (int i = a[0] - 1; i > 0; i--)
120         {
121             sum = sum * base + a[i];
122             if (sum < b && first)
123                 continue;
124             if (first)
125             {
126                 first = 0;
127                 ans[0] = i + 1;
128             }
129             ans[i] = sum / b;
130             sum %= b;
131         }
132         return sum;
133     }
134     bool less(bigint & x) //this<x
135     {
136         if (x.a[0] != a[0])
137             return a[0] < x.a[0];
138         for (int i = a[0] - 1; i > 0; i--)
139             if (a[i] != x.a[i])
140                 return a[i] < x.a[i];
141         return 0;
142     }
143 };
//大整数类
 1 int d[2000],dn,c[2000];
 2 void fac(int n)//找出所有约数
 3 {
 4     dn = 0;
 5     for (int i = 1; i * i <= n; i++)
 6         if (n % i == 0)
 7         {
 8             d[dn++] = i;
 9             if (i * i != n)
10                 d[dn++] = n / i;
11         }
12     sort(d, d + dn);
13 }
14 LL polya(int n)
15 {
16     fac(n);
17     memset(c, 0, sizeof(c));
18     for (int i = 0; i < dn; i++) //容斥求所有约数的欧拉函数
19     {
20         c[i] += d[i];
21         for (int j = i + 1; j < dn; j++)
22             if (d[j] % d[i] == 0)
23                 c[j] -= c[i];
24     }
25     LL ans = 0;
26     for (int i = 0; i < dn; i++)
27     {
28         int x = n / d[i];
29         ans = (ans + (LL)c[i] * mar_quick(x, 2, 1)) % mod; //计算 x 个循环节的置换有多少种方案,polya 定理中
30         为 m ^ x
31     }
32     ans = (ans * Inv(n)) % mod;
33     return ans;
34 }
//polya定理
 1 int d[2000],phi[2000],dn,p[20],pn,e[20];
 2 void facdiv(int n) //质因分解成 n=p[0]^e[0] * p[1]^e[1] * ... *p[pn-1]^e[pn-1]
 3 {
 4     pn = 0;
 5     //for(int j=0,i=prime[0];i*i<=n;i=prime[++j]) if(n%i==0)
 6     //筛出质数表加速质因分解
 7     for (int i = 2; i * i <= n; i++)
 8         if (n % i == 0)
 9         {
10             p[pn] = i;
11             e[pn] = 0;
12             while (n % i == 0)
13                 n /= i, e[pn]++;
14             pn++;
15         }
16     if (n != 1)
17         p[pn] = n, e[pn++] = 1;
18 }
//d为约数数组,phi[i]为第 i个约数的欧拉函数,p为 n分解出来的素数数组,e为次幂数组
 1 void GetDivisorPhi() //根据上面的基因分解算出所有约数的欧拉函数(与 d[i]互质的数的个数)
 2 {
 3     dn = 1;
 4     d[0] = 1;
 5     phi[0] = 1;
 6     for (int i = 0; i < pn; i++)
 7     {
 8         int num = dn;
 9         for (int j = 0; j < num; j++)
10         {
11             phi[dn] = phi[j] * (p[i] - 1);
12             d[dn] = d[j] * p[i];
13             dn++;
14             for (int k = 2; k <= e[i]; k++)
15             {
16                 phi[dn] = phi[dn - 1] * p[i];
17                 d[dn] = d[dn - 1] * p[i];
18                 dn++;
19             }
20         }
21     }
22 }
//根据上面的基因分解算出所有约数的欧拉函数(与 d[i]互质的数的个数)
 1 const int S=20;//随机算法判定次数,S越大,判错概率越小
 2 //计算 (a*b)%c. a,b都是 LL的数,直接相乘可能溢出的
 3 // a,b,c <2^63
 4 LL multi_mod( LL x , LL y ,LL mod)
 5 {
 6     return (x * y - (LL)(x / (long double)mod * y + 1e-3) * mod + mod) % mod;
 7 }
 8 //快速幂,计算 x^n %c
 9 LL quick_mod(LL t,LL n,LL mod)
10 {
11     t %= mod;
12     LL ans = 1;
13     while (n)
14     {
15         if (n & 1)
16             ans = multi_mod(ans, t, mod);
17         t = multi_mod(t, t, mod);
18         n >>= 1;
19     }
20     return ans;
21 }
22 
23  
24 //以 a为基,n-1=x*2^t
25 a^(n-1)=1(mod n) 验证 n是不是合数
26 //一定是合数返回 true,不一定返回 false
27 bool check(LL a,LL n,LL x,LL t)
28 {
29     LL ans = quick_mod(a, x, n);
30     LL last = ans;
31     for (int i = 1; i <= t; i++)
32     {
33         ans = multi_mod(ans, ans, n);
34         if (ans == 1 && last != 1 && last != n - 1)
35             return true; //合数
36         last = ans;
37     }
38     if (ans != 1)
39         return true;
40     return false;
41 }
42 // Miller_Rabin()算法素数判定
43 //是素数返回 true.(可能是伪素数,但概率极小)
44 //合数返回 false;
45 bool Miller_Rabin(LL n)
46 {
47     if (n < 2)
48         return false;
49     if (n == 2)
50         return true;
51     if ((n & 1) == 0)
52         return false; //偶数
53     LL x = n - 1;
54     LL t = 0;
55     while ((x & 1) == 0)
56     {
57         x >>= 1;
58         t++;
59     }
60     for (int i = 0; i < S; i++)
61     {
62         LL a = rand() % (n - 1) + 1;
63         if (check(a, n, x, t))
64             return false; //合数
65     }
66     return true;
67 }
// Miller_Rabin 算法进行素数测试 //速度快,而且可以判断 <2^63的数
 1 LL fac[100];//质因数分解结果(刚返回时是无序的)
 2 int tol;//质因数的个数。数组小标从 0开始
 3 LL gcd(LL a,LL b)
 4 {
 5     if (a == 0)
 6         return 1;
 7     if (a < 0)
 8         return gcd(-a, b);
 9     while (b)
10     {
11         LL t = a % b;
12         a = b;
13         b = t;
14     }
15     return a;
16 }
17 
18  
19 LL Pollard_rho(LL x,LL c)
20 {
21     LL i = 1, k = 2;
22     LL x0 = rand() % x;
23     LL y = x0;
24     while (1)
25     {
26         i++;
27         x0 = (multi_mod(x0, x0, x) + c) % x;
28         LL d = gcd(y - x0, x);
29         if (d != 1 && d != x)
30             return d;
31         if (y == x0)
32             return x;
33         if (i == k)
34             y = x0, k += k;
35     }
36 }
37 //对 n进行素因子分解,分解后的因子不是有序的,要 sort
38 void findfac(LL n)
39 {
40     if (n == 1)
41         return;
42     if (Miller_Rabin(n)) //素数
43     {
44         fac[tol++] = n;
45         return;
46     }
47     LL p = n;
48     while (p >= n)
49         p = Pollard_rho(p, rand() % (n - 1) + 1);
50     findfac(p);
51     findfac(n / p);
52 }
//pollard_rho 算法进行质因数分解,复杂度比 sqrt(n)低
 1 LL multi_mod(LL a,LL b,LL mod)//a,b传过来的要是正数
 2 {
 3     LL ans = 0;
 4     a %= mod;
 5     b %= mod;
 6     while (b)
 7     {
 8         if (b & 1)
 9             ans = ans + a;
10         if (ans >= mod)
11             ans -= mod;
12         a <<= 1;
13         if (a >= mod)
14             a -= mod;
15         b >>= 1;
16     }
17     return ans;
18 }
//模乘法,模拟二进制乘法求模,在 long long*long long求模的情况下不溢出 O(64)
1 LL multi_mod( LL x , LL y ,LL mod)
2 {
3     return (x * y - (LL)(x / (long double)mod * y + 1e-3) * mod + mod) % mod;
4 }
//比上面的模乘法快,并不懂原理
 1 //multi_mod 中过多的传参会耗费大量时间,不爆 long long 的话最好写成 a*b%mod
 2 //如果精度超过 double 可以用 NTT 求多个 P,再用中国剩余定理算回去
 3 //f(i)=sigma{a[j]*b[i-j],0<=i<n}
 4 //const LL P = ( 1LL << 55 ) * 5 + 1 ;
 5 //const LL G = 6 ;
 6 const int P =479<<21|1;
 7 //const int P1=119<<23|1;//费马质数,P-1 能整除 2^n
 8 const int G = 3; //原根,最小的数满足 G^(P-1)==1
 9 const int NUM = 30;
10 LL wn[NUM];
11 LL x[N*4],y[N*4];
12 void GetWn()
13 {
14     for (int i = 0; i < NUM; i++)
15     {
16         int t = 1 << i;
17         wn[i] = quick_mod(G, (P - 1) / t);
18     }
19 }
20 void NTT(LL *a,int len,bool rev)
21 {
22     for (int i = 1, j, t, k; i < len; i++)
23     {
24         for (k = len >> 1, t = i, j = 0; k; k >>= 1, t >>= 1)
25             j = j << 1 | t & 1;
26         if (i < j)
27             swap(a[i], a[j]);
28     }
29     for (int s = 2, ds = 1, id = 1; s <= len; ds = s, s <<= 1, id++)
30     {
31         for (int k = 0; k < len; k += s)
32         {
33             LL w = 1, t;
34             for (int i = k; i < k + ds; i++)
35             {
36                 a[i + ds] = (a[i] - (t = multi_mod(a[i + ds], w)) + P) % P;
37                 a[i] = (a[i] + t) % P;
38                 w = multi_mod(w, wn[id]);
39             }
40         }
41     }
42     if (rev)
43     {
44         for (int i = 1; i<len>> 1; i++)
45             swap(a[i], a[len - i]);
46         LL inv = quick_mod(len, P - 2);
47         for (int i = 0; i < len; i++)
48             a[i] = multi_mod(a[i], inv);
49     }
50 }
51 void Conv(LL *a, LL *b, int n)
52 {
53     NTT(a, n, 0);
54     NTT(b, n, 0);
55     for (int i = 0; i < n; i++)
56         a[i] = multi_mod(a[i], b[i]);
57     NTT(a, n, 1);
58 }
//快速数论变换 NTT,得到的多项式的每一位的结果已经模了 P //不比 FFT 快,因为求模花的时间较多
 1 const double pi=acos(-1);
 2 struct cplx
 3 {
 4     //复数类/多项式/大整数
 5     double r, i;
 6     cplx(double r = 0, double i = 0) : r(r), i(i) {}
 7     cplx operator+(const cplx &a) const
 8     {
 9         return cplx(r + a.r, i + a.i);
10     }
11     cplx operator-(const cplx &a) const
12     {
13         return cplx(r - a.r, i - a.i);
14     }
15     cplx operator*(const cplx &a) const
16     {
17         return cplx(r * a.r - i * a.i, r * a.i + i * a.r);
18     }
19 };
20 //快速傅里叶变换 FFT(nlogn)
21 //len = 2^M,reverse F[i] with F[j] j为 i二进制反转
22 void rader(cplx *f,int len)
23 {
24     int j = len >> 1;
25     for (int i = 1; i < len - 1; ++i)
26     {
27         if (i < j)
28             swap(f[i], f[j]); // reverse
29         int k = len >> 1;
30         while (j >= k)
31         {
32             j -= k;
33             k >>= 1;
34         }
35         if (j < k)
36             j += k;
37     }
38 }
39 //做 FFT,len必须为 2^k形式,on==1时是 DFT,on==-1时是 IDFT
40 void FFT(cplx *f,int len,int t)
41 {
42     rader(f, len);
43     for (int h = 2; h <= len; h <<= 1)
44     {
45         cplx wn(cos(-t * 2 * pi / h), sin(-t * 2 * pi / h));
46         for (int j = 0; j < len; j += h)
47         {
48             cplx e(1, 0); //旋转因子
49             for (int k = j; k < j + h / 2; ++k)
50             {
51                 cplx u = f[k];
52 
53                 cplx v = e * f[k + h / 2];
54                 f[k] = u + v;
55                 f[k + h / 2] = u - v;
56                 e = e * wn;
57             }
58         }
59     }
60     if (t == -1)
61         for (int i = 0; i < len; ++i)
62             f[i].r /= len; //IDFT
63 }
64 //传入 a,b之前需将 a,b的长度处理为 len=2^k,a,b数组需开到原长度的 3-4倍,变换结果为 a数组
65 void Conv(cplx *a,cplx *b,int len) //求卷积
66 {
67     FFT(a, len, 1);
68     FFT(b, len, 1);
69     for (int i = 0; i < len; ++i)
70         a[i] = a[i] * b[i];
71     FFT(a, len, -1);
72 }
//快速傅里叶变换 FFT(nlogn)
  1 const int N = 5e6+2;
  2 bool np[N];
  3 int p[N],pi[N];
  4 int getprime()
  5 {
  6     //pi[i]表示不超过 i的质数个数,p存素数
  7     int cnt = 0;
  8     np[0] = np[1] = true;
  9     pi[0] = pi[1] = 0;
 10     for (int i = 2; i < N; ++i)
 11     {
 12         if (!np[i])
 13             p[++cnt] = i;
 14         for (int j = 1; j <= cnt && i * p[j] < N; ++j)
 15         {
 16             np[i * p[j]] = true;
 17         }
 18         pi[i] = cnt;
 19     }
 20     return cnt;
 21 }
 22 const int M = 7;
 23 const int PM = 2*3*5*7*11*13*17;
 24 int phi[PM+1][M+1],sz[M+1];
 25 void init()
 26 {
 27     getprime();
 28     sz[0] = 1;
 29     for (int i = 0; i <= PM; ++i)
 30         phi[i][0] = i;
 31     for (int i = 1; i <= M; ++i)
 32     {
 33         sz[i] = p[i] * sz[i - 1];
 34         for (int j = 1; j <= PM; ++j)
 35         {
 36             phi[j][i] = phi[j][i - 1] - phi[j / p[i]][i - 1];
 37         }
 38     }
 39 }
 40 
 41  
 42 int sqrt2(LL x)
 43 {
 44     LL r = (LL)sqrt(x - 0.1);
 45     while (r * r <= x)
 46         ++r;
 47     return int(r - 1);
 48 }
 49 int sqrt3(LL x)
 50 {
 51     LL r = (LL)cbrt(x - 0.1);
 52     while (r * r * r <= x)
 53         ++r;
 54     return int(r - 1);
 55 }
 56 LL getphi(LL x,int s)
 57 {
 58     if (s == 0)
 59         return x;
 60     if (s <= M)
 61         return phi[x % sz[s]][s] + (x / sz[s]) * phi[sz[s]][s];
 62     if (x <= p[s] * p[s])
 63         return pi[x] - s + 1;
 64     if (x <= p[s] * p[s] * p[s] && x < N)
 65     {
 66         int s2x = pi[sqrt2(x)];
 67         LL ans = pi[x] - (s2x + s - 2) * (s2x - s + 1) / 2;
 68         for (int i = s + 1; i <= s2x; ++i)
 69         {
 70             ans += pi[x / p[i]];
 71         }
 72         return ans;
 73     }
 74     return getphi(x, s - 1) - getphi(x / p[s], s - 1);
 75 }
 76 LL getpi(LL x)
 77 {
 78     //返回小于 x 的素数个数
 79     if (x < N)
 80         return pi[x];
 81     LL ans = getphi(x, pi[sqrt3(x)]) + pi[sqrt3(x)] - 1;
 82     for (int i = pi[sqrt3(x)] + 1, ed = pi[sqrt2(x)]; i <= ed; ++i)
 83         ans -= getpi(x / p[i]) - i + 1;
 84     return ans;
 85 }
 86 LL lehmer_pi(LL x)
 87 {
 88     if (x < N)
 89         return pi[x];
 90     int a = (int)lehmer_pi(sqrt2(sqrt2(x)));
 91     int b = (int)lehmer_pi(sqrt2(x));
 92     int c = (int)lehmer_pi(sqrt3(x));
 93     LL sum = getphi(x, a) + LL(b + a - 2) * (b - a + 1) / 2;
 94     for (int i = a + 1; i <= b; i++)
 95     {
 96         LL w = x / p[i];
 97         sum -= lehmer_pi(w);
 98         if (i > c)
 99             continue;
100         LL lim = lehmer_pi(sqrt2(w));
101         for (int j = i; j <= lim; j++)
102         {
103             sum -= lehmer_pi(w / p[j]) - (j - 1);
104         }
105     }
106     return sum;
107 
108  
109 }
110 LL getans(LL x)
111 { // x < 1e11
112     LL ans = 0;
113     //返回相乘不大于 x的质数对数
114     for (int i = 1, ed = pi[sqrt2(x - 1)]; i <= ed; ++i)
115         ans += lehmer_pi(x / p[i]) - i;
116     return ans;
117 }
//算 1e11内质数个数,copy的,先要执行 init()函数
1 void swap(int &a,int &b)
2 {
3     a ^= b;
4     b ^= a;
5     a ^= b;
6 }
//交换两个数
1 struct node
2 {
3     int i, w;
4     bool operator<(const node &a) const
5     {
6         return w > a.w;
7     }
8 };
//优先队列结构体
 1 int prim()
 2 {
 3     //O(nlogn)
 4     memset(d, 0x3f, sizeof(d));
 5     memset(vis, 0, sizeof(vis));
 6     d[1] = 0;
 7     priority_queue<node> q;
 8     q.push(node{1, 0});
 9     while (!q.empty())
10     {
11         node u = q.top();
12         q.pop();
13         if (vis[u.i])
14             continue;
15         vis[u.i] = 1;
16         for (vector<int>::iterator i = v[u.i].begin(), j = w[u.i].begin(); i != v[u.i].end(); i++, j++)
17         {
18             if (vis[*i] || d[*i] <= *j)
19                 continue;
20             d[*i] = *j;
21             q.push(node{*i, d[*i]});
22         }
23     }
24     int sum = 0;
25     for (int i = 1; i <= n; i++)
26         sum += d[i];
27     return sum;
28 }
29 
30  
31 int prim()
32 {
33     //O(n^2)
34     memset(d, 0x3f, sizeof(d));
35     memset(vis, 0, sizeof(vis));
36     d[1] = 0;
37     for (int i = 2; i <= n; i++)
38     {
39         int x = -1;
40         for (int j = 1; j <= n; j++)
41             if (!vis[j] && (x == -1 || d[j] < d[x]))
42                 x = j; //j要未作为过起点
43         vis[x] = 1;
44         for (vector<int>::iterator j = v[x].begin(), k = w[x].begin(); j != v[x].end(); j++, k++)
45             if (!vis[*j] && *k < d[*j])
46                 d[*j] = *k;
47     }
48     int sum = 0;
49     for (int i = 1; i <= n; i++)
50         sum += d[i];
51     return sum;
52 }
//Prim加点法最小生成树
 1 struct maxMacth
 2 {
 3     int n;
 4     int vm[N], um[N];
 5     bool vis[N];
 6     vector<int> g[N];
 7     int dx[N], dy[N], dis;
 8     void init(int num)
 9     {
10         n = num;
11         memset(vm, -1, sizeof(vm));
12         memset(um, -1, sizeof(um));
13         for (int i = 0; i <= n; i++)
14             g[i].clear();
15     }
16     void inserts(int u, int v)
17     {
18         g[u].push_back(v);
19     }
20     bool searchP()
21     {
22         queue<int> q;
23         dis = INF;
24         memset(dx, -1, sizeof(dx));
25         memset(dy, -1, sizeof(dy));
26         for (int i = 1; i <= n; i++)
27             if (um[i] == -1)
28             {
29                 q.push(i);
30                 dx[i] = 0;
31             }
32         while (!q.empty())
33 
34         {
35             int u = q.front();
36             q.pop();
37             if (dx[u] > dis)
38                 break;
39             for (int i = 0; i < g[u].size(); i++)
40             {
41                 int v = g[u][i];
42                 if (dy[v] == -1)
43                 {
44                     dy[v] = dx[u] + 1;
45                     if (vm[v] == -1)
46                         dis = dy[v];
47                     else
48                     {
49                         dx[vm[v]] = dy[v] + 1;
50                         q.push(vm[v]);
51                     }
52                 }
53             }
54         }
55         return dis != INF;
56     }
57     bool dfs(int u)
58     {
59         for (int i = 0; i < g[u].size(); i++)
60         {
61             int v = g[u][i];
62             if (!vis[v] && dy[v] == dx[u] + 1)
63             {
64                 vis[v] = 1;
65                 if (vm[v] != -1 && dy[v] == dis)
66                     continue;
67                 if (vm[v] == -1 || dfs(vm[v]))
68                 {
69                     vm[v] = u;
70                     um[u] = v;
71                     return 1;
72                 }
73             }
74         }
75         return 0;
76     }
77     int maxMatch()
78     {
79         int res = 0;
80         while (searchP())
81         {
82             memset(vis, 0, sizeof(vis));
83             for (int i = 1; i <= n; i++)
84                 if (um[i] == -1 && dfs(i))
85                     res++;
86         }
87         return res;
88     }
89 }MM;
//二分图最大匹配
 1 const int N=1e6+10;
 2 const int M=26;
 3 int ch[N][M];
 4 int val[N];
 5 int sz;
 6 void init()
 7 {
 8     sz = 1;
 9     memset(ch[0], 0, sizeof(ch[0]));
10 }
11 inline int idx(char c)
12 {
13     return c - 'a'; 
14 }
15 void insert(char *s,int v)
16 {
17     int u = 0, i;
18     for (i = 0; s[i]; i++)
19     {
20         int c = idx(s[i]);
21         if (!ch[u][c])
22         {
23             memset(ch[sz], 0, sizeof(ch[sz]));
24             val[sz] = 0;
25             ch[u][c] = sz++;
26         }
27         u = ch[u][c];
28     }
29     val[u] = v;
30     //val[u]=max(val[u],i);//val记录长度
31 }
32 int f[N],last[N];//last数组连接着所有相同后缀结束的模板串
33 void getFail()
34 {
35     queue<int> q;
36     f[0] = 0;
37     for (int c = 0; c < M; c++)
38     {
39         int u = ch[0][c];
40         if (u)
41         {
42             f[u] = 0;
43             q.push(u);
44             last[u] = 0;
45         }
46     }
47     while (!q.empty())
48     {
49         int r = q.front();
50         q.pop();
51         for (int c = 0; c < M; c++)
52         {
53             int u = ch[r][c];
54             if (!u)
55                 continue;
56             q.push(u);
57 
58             int v = f[r];
59             while (v && !ch[v][c])
60                 v = f[v];
61             f[u] = ch[v][c];
62             last[u] = val[f[u]] ? f[u] : last[f[u]];
63         }
64     }
65 }
66 void print(int i,int j)//输出所有匹配位置
67 {
68     if (j)
69     {
70         //找到后的处理,i是结束位置,字符串长度或值为 val[i]
71         print(i, last[j]);
72     }
73 }
74 int find(char *T)
75 {
76     int j = 0, i = 0;
77     for (; T[i]; i++)
78     {
79         int c = idx(T[i]);
80         while (j && !ch[j][c])
81             j = f[j];
82         j = ch[j][c];
83         if (val[j])
84             print(i, j);
85         else if (last[j])
86             print(i, last[j]);
87     }
88     return i;
89 }
//AC自动机 //字符串字典树
 1 const int maxc=2;
 2 const int BIT=31;
 3 int ch[N<<5][maxc],si[N<<5];
 4 void init()
 5 {
 6     //每次建一棵新的字典树都要初始化
 7     memset(ch[0], 0, sizeof(ch[0]));
 8     si[0] = 1;
 9 }
10 void insert(int s)
11 {
12     int u = 0;
13     for (int i = BIT - 1; i >= 0; i--)
14     {
15         int c = (s & (1 << i) ? 1 : 0);
16         if (!ch[u][c])
17         {
18             memset(ch[si[0]], 0, sizeof(ch[0]));
19             si[si[0]] = 0;
20             ch[u][c] = si[0]++;
21         }
22         u = ch[u][c];
23         si[u]++;
24     }
25 }
26 int find(int s)
27 {
28     int u = 0;
29     for (int i = BIT - 1; i >= 0; i--)
30     {
31         int c = (s & (1 << i) ? 1 : 0);
32         if (!ch[u][c] || si[ch[u][c]] <= 0)
33             return 0;
34         u = ch[u][c];
35     }
36     return 1;
37 }
38 bool erase(int s)
39 {
40     int u = 0;
41     for (int i = BIT - 1; i >= 0; i--)
42     {
43         int c = (s & (1 << i) ? 1 : 0);
44         if (!ch[u][c] || si[ch[u][c]] <= 0)
45             return 0;
46         u = ch[u][c];
47         si[u]--;
48     }
49     return 1;
50 }
//二进制数字典树
 1 int ch[N*20][2],si[N*20];
 2 //1 bro 0 son
 3 char val[N*20];
 4 void init()
 5 {
 6     ch[0][0] = ch[0][1] = 0;
 7     si[0] = 1;
 8     val[0] = 0;
 9 }
10 void insert(char *s)
11 {
12     int u = 0;
13     for (int i = 0; s[i]; i++)
14     {
15         int v = ch[u][0];
16         while (v && val[v] != s[i])
17             v = ch[v][1];
18         if (!v)
19         {
20             //链表头插
21             int &t = si[0];
22             ch[t][1] = ch[u][0];
23 
24             si[t] = ch[t][0] = 0;
25             val[t] = s[i];
26             v = ch[u][0] = t++;
27         }
28         u = v;
29     }
30     si[u] = 1;
31 }
32 bool find(char *s)
33 {
34     int u = 0;
35     for (int i = 0; s[i]; i++)
36     {
37         for (u = ch[u][0]; u && val[u] != s[i]; u = ch[u][1])
38             ;
39         if (!u)
40             return 0;
41     }
42     if (si[u])
43         return 1;
44     return 0;
45 }
46 //字符串哈希 H(i)=H(i+1)x+s[i],Hash(i,L)=H(i)-H(i+L)*x^L;
47 int bfind()
48 {
49     int l = 1, r = n;
50     while (l < r)
51     {
52         int mid = r - (r - l) / 2;
53         if (hash_l(mid))
54             l = mid;
55         else
56             r = mid - 1;
57     }
58     return l;
59 }
} //左兄弟右儿子字符串字典树(二叉,省空间,时间换空间)
 1 const int N=1e6+10;
 2 int bit=8;
 3 int base=1<<bit;
 4 int mask=base-1;
 5 int maxbit=20;
 6 int n,x[N],h,next[N],m;
 7 int head[N],tial[N];
 8 void radixsort(int &h,int *x)
 9 {
10     for (int i = 0; i < maxbit; i += bit)
11     {
12         memset(head, 0, sizeof(head[0]) * base);
13         for (int j = h, tmp; j; j = tmp)
14         //分桶
15 
16         {
17             tmp = next[j];
18             int c = (x[j] >> i) & mask;
19             if (!head[c])
20             {
21                 head[c] = tial[c] = j;
22                 next[j] = 0;
23             }
24             else
25             {
26                 next[tial[c]] = j;
27                 next[j] = 0;
28                 tial[c] = j;
29             }
30         }
31         h = 0;
32         int ti;
33         //for(int j=0;j<base;j++) if(head[j]) //合并,升序
34         for (int j = mask; j >= 0; j--)
35             if (head[j]) //合并,降序
36             {
37                 if (!h)
38                     h = head[j];
39                 else
40                     next[ti] = head[j];
41                 ti = tial[j];
42             }
43     }
44 }
45 void init()
46 {
47     bit = 0;
48     while (1 << bit < n)
49         bit++;
50     bit -= 3;
51     bit = std::min(20, bit); //最大的比 maxbit小一点
52     bit = std::max(4, bit);
53     base = 1 << bit;
54     mask = base - 1;
55 }
56 int main()
57 {
58     while (scanf("%d%d", &n, &m) == 2)
59     {
60         for (int i = 1; i <= n; i++)
61         {
62             scanf("%d", x + i);
63             x[i] += 500000;
64             next[i] = i + 1;
65         }
66         init();
67         h = 1;
68         next[n] = 0;
69         radixsort(h, x);
70 
71         for (int i = h; i && m; i = next[i])
72             printf("%d%c", x[i] - 500000, (--m) ? ' ' : '\n');
73         return 0;
74     }
75 }
//多关键基数排序
 1 template <class T>
 2 void qsort(int l,int r,T *p)
 3 {
 4     if (l >= r)
 5         return;
 6     T t = p[l];
 7     int i = l, j = r;
 8     while (i < j)
 9     {
10         //以第一个为基准排序,大的放左边,小的放右边
11         while (i < j && p[j]->score <= t->score)
12             j--; //找到一个小的
13         p[i] = p[j];
14         while (i < j && p[i]->score > t->score)
15             i++; //找到一个大的
16         p[j] = p[i];
17     }
18     p[i] = t;
19     qsort(l, i - 1, p);
20     qsort(i + 1, r, p);
21 }
//快排
 1 template<class T>
 2 void mergesort(int l,int r,T *p,T *tmp)
 3 {
 4     if (l == r)
 5         return;
 6     int mid = r - (r - l) / 2;
 7     mergesort(l, mid - 1, p, tmp);
 8     mergesort(mid, r, p, tmp);
 9     int i = l, j = mid, k = l;
10     while (i < mid || j <= r)
11     {
12         //归并
13         if (j > r || i < mid && p[i]->score >= p[j]->score)
14             tmp[k++] = p[i++];
15         else
16             tmp[k++] = p[j++];
17     }
18     while (l <= r)
19         p[l] = tmp[l++];
20     //复制回原数组
21 }
//归并排序
 1 template <class T>
 2 void HeapAdjust(T *p,int s,int m)
 3 {
 4     T rc = p[s];
 5     //沿 key较大的孩子结点向下筛选
 6     for (int j = s << 1; j <= m; j <<= 1)
 7     {
 8         if (j < m && p[j] < p[j + 1])
 9             ++j;
10         if (rc >= p[j])
11             break;
12         p[s] = p[j];
13         s = j;
14         //j为 key较大的记录的下标
15         //rc应插入在位置 s上
16     }
17     p[s] = rc;
18     //插入
19 }
20 template <class T>
21 void HeapSort(T *p)
22 {
23     //数组下标从 1开始
24     for (int i = n / 2; i > 0; --i)
25         HeapAdjust(p, i, n); //建堆,不断将子二叉树调整为堆,然后整个二叉树就满足
26     了堆性质
27     for (int i = n, j = 1; j <= m; i--, j++)
28     //每次将当前最大(小)(堆顶)元素,放到尾部,调整堆
29     {
30         swap(p[1], p[i]);
31         HeapAdjust(p, 1, i - 1);
32     }
33 }
//堆排序 //将某个子二叉树调整为堆,满足 p[i]>=k[i*2]&&p[i]>=k[i*2+1](或小于)
 1 template <class T>
 2 void HeapUpAdjust(T *p,int s)//从 s向上到 1调整堆
 3 {
 4     int x = p[s];
 5     while (s > 1)
 6     {
 7         if (x < p[s >> 1])
 8             p[s] = p[s >> 1];
 9         else
10             break;
11         s >>= 1;
12     }
13     p[s] = x;
14 }
15 template <class T>
16 void HeapDownAdjust(T *p,int s,int n)//从 s向下到 n调整堆
17 {
18     int x = p[s];
19     s <<= 1;
20     while (s <= n)
21     {
22         if (s < n && p[s | 1] < p[s])
23             s |= 1;
24         if (p[s] >= x)
25             break;
26         p[s >> 1] = p[s];
27 
28         s <<= 1;
29         p[s >> 1] = x;
30     }
31 }
//堆调整

优先队列入队:加元素到尾部,然后向上调整,size++
优先队列出队:将最后一个元素放到顶部,向下调整堆,size--

 1 int n,a[N],d[N][20];
 2 void RMQ_init()
 3 {
 4     for (int i = 1; i <= n; i++)
 5         d[i][0] = a[i];
 6     for (int j = 1; (1 << j) <= n; j++)
 7         for (int i = 1; i + (1 << j) - 1 <= n; i++)
 8             d[i][j] = min(d[i][j - 1], d[i + (1 << (j - 1))][j - 1]);
 9 }
10 int RMQ(int L,int R)
11 {
12     int k = 0;
13     while ((1 << (k + 1)) <= R - L + 1)
14         k++;
15     return min(d[L][k], d[R - (1 << k) + 1][k]);
16 }
//RMQ
公平游戏:一个游戏者可以把状态 A变成状态 B,另一个也可以.象棋是不公平游戏
规则 1:一个状态是必败状态当且仅当它的所有后继都是必胜状态
规则 2:一个状态是必胜状态当且仅当它至少有一个后继是必败状态
dp时,对于每个状态,查找它的后继状态有没有必败状态,有就是必胜状态,没有就是必败状态
当数据较大,dp打表会超时时就打出一个比较小的表找数(0出现)的规律
  1 struct Point
  2 {
  3     double x, y;
  4     Point(double x = 0, double y = 0) : x(x), y(y) {}
  5 };
  6 typedef Point Vector;
  7 Vector operator + (Vector A,Vector B) {
  8     return Vector(A.x + B.x, A.y + B.y); }
  9 Vector operator - (Point A,Point B) {
 10     return Vector(A.x - B.x, A.y - B.y); }
 11 Vector operator * (Vector A,double p) {
 12     return Vector(A.x * p, A.y * p); }
 13 Vector operator / (Vector A,double p) {
 14     return Vector(A.x / p, A.y / p); }
 15 bool operator < (const Point & a,const Point &b) {
 16     return a.x < b.x || (a.x == b.x && a.y < b.y); }
 17 const double eps=1e-9;
 18 const double pi=acos(-1);
 19 int dcmp(double x) {
 20     if (fabs(x) < eps)
 21         return 0;
 22     else
 23         return x < 0 ? -1 : 1; }
 24 bool operator == (const Point& a,const Point &b) {
 25     return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0; }
 26 
 27  
 28 //基本运算
 29 double Dot(Vector A,Vector B) //向量的点积
 30 {
 31     return A.x * B.x + A.y * B.y;
 32 }
 33 double Length(Vector A) //向量的长度
 34 {
 35     return sqrt(Dot(A, A));
 36 }
 37 double Angle(Vector A,Vector B) //两个向量的夹角
 38 {
 39     return acos(Dot(A, B) / Length(A) / Length(B));
 40 }
 41 double Cross(Vector A,Vector B) //向量叉积
 42 {
 43     return A.x * B.y - A.y * B.x;
 44 }
 45 double Area2(Point A,Point B,Point C)//三角形面积
 46 {
 47     return Cross(B - A, C - A);
 48 }
 49 Vector Rotate(Vector A,double rad)//向量逆时针旋转
 50 {
 51     return Vector(A.x * cos(rad) - A.y * sin(rad), A.x * sin(rad) + A.y * cos(rad));
 52 }
 53 Vector Normal(Vector A)
 54 {//计算向量的单位法向量(左转 90度以后把长度归一化),调用前确保 A不是 0向量
 55     double L = Length(A);
 56     return Vector(-A.y / L, A.x / L);
 57 }
 58 //点和直线
 59 Point GetLineIntersection(Point P,Vector v,Point Q,Vector w)
 60 {//调用前确保两条直线 P+tv和 Q+tw有唯一交点,即 Cross(v,w)非 0
 61     Vector u = P - Q;
 62     double t = Cross(w, u) / Cross(v, w);
 63     return P + v * t;
 64 }
 65 double DistanceToLine(Point P,Point A,Point B)
 66 {//点到直线的距离
 67     Vector v1 = B - A, v2 = P - A;
 68     return fabs(Cross(v1, v2)) / Length(v1); //不取绝对值得到有向距离
 69 }
 70 
 71  
 72 double DistanceToSegment(Point P,Point A,Point B)
 73 {//点到线段的距离
 74     if (A == B)
 75         return Length(P - A);
 76     Vector v1 = B - A, v2 = P - A, v3 = P - B;
 77     if (dcmp(Dot(v1, v2)) < 0)
 78         return Length(v2);
 79     else if (dcmp(Dot(v1, v3)) > 0)
 80         return Length(v3);
 81     else
 82         return fabs(Cross(v1, v2)) / Length(v1);
 83 }
 84 Point GetLineProjection(Point P,Point A,Point B)
 85 {//点在直线上的投影
 86     Vector v = B - A;
 87     return A + v * (Dot(v, P - A) / Dot(v, v));
 88 }
 89 bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2)
 90 {//判线段相交,两线段恰好有一个公共点且不再任何一条线段的端点
 91     double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1);
 92     double c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1);
 93     return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;
 94 }
 95 bool PointOnSegment(Point p,Point a1,Point a2)
 96 {//判断点是否在线段上(不含端点,端点直接判 p和 a1或 a2是否相等)
 97     //if(p==a1||p==a2) return 1;//判点相同
 98     return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 - p)) < 0;
 99 }
100 //多边形
101 double PolygonArea(Point *p,int n)
102 {//多边形有向面积
103     double area = 0;
104     for (int i = 1; i < n - 1; i++)
105         area += Cross(p[i] - p[0], p[i + 1] - p[0]);
106     return area / 2;
107 }
108 int isPointInPolygon(Point p,Point*poly,int n)
109 {//点在多边形判定
110     int wn = 0;
111     for (int i = 0; i < n; i++)
112     {
113         if (PointOnSegment(p, poly[i], poly[(i + 1) % n]))
114             return -1; //在边界上
115         int k = dcmp(Cross(poly[(i + 1) % n] - poly[i], p - poly[i]));
116         int d1 = dcmp(poly[i].y - p.y);
117         int d2 = dcmp(poly[(i + 1) % n].y - p.y);
118         if (k > 0 && d1 <= 0 && d2 > 0)
119             wn++;
120         if (k < 0 && d2 <= 0 && d1 > 0)
121             wn--;
122     }
123     if (wn != 0)
124         return 1; //内部
125     return 0;
126     //外部
127 }
128 
129  
130 //计算凸包,输入点数组 p,个数为 p,输出点数组 ch.函数返回凸包顶点数
131 //输入不能有重复点.注意:函数执行完之后输入点的顺序被破坏
132 //如果不希望在凸包的边上有输入点,把两个<=改成<
133 //在精度要求高时建议用 dcmp比较
134 int ConvexHull(Point* p,int n,Point *ch)
135 {
136     sort(p, p + n);
137     int m = 0;
138     for (int i = 0; i < n; i++)
139     {
140         while (m > 1 && Cross(ch[m - 1] - ch[m - 2], p[i] - ch[m - 2]) <= 0)
141             m--;
142         ch[m++] = p[i];
143     }
144     int k = m;
145     for (int i = n - 2; i >= 0; i--)
146     {
147         while (m > k && Cross(ch[m - 1] - ch[m - 2], p[i] - ch[m - 2]) <= 0)
148             m--;
149         ch[m++] = p[i];
150     }
151     if (n > 1)
152         m--;
153     return m; //凸包顶点数
154 }
155 double PointoRecDist(Point p,Point ra,Point rb)
156 {//点到长方形的距离
157     if (ra.x > rb.x)
158         swap(ra.x, rb.x); //变成左上和右下角
159     if (ra.y > rb.y)
160         swap(ra.y, rb.y);
161     double dx = 0, dy = 0;
162     if (p.x < ra.x)
163         dx = ra.x - p.x;
164     else if (p.x > rb.x)
165         dx = p.x - rb.x;
166     if (p.y < ra.y)
167         dy = ra.y - p.y;
168     else if (p.y > rb.y)
169         dy = p.y - rb.y;
170     return sqrt(dx * dx + dy * dy);
171 }
172 double getcycy(double x,double neg,Point cyc,double ri)
173 {//由 x得到圆上点的 y坐标,neg表示上 1下-1
174     return cyc.y + neg * sqrt(ri * ri - (x - cyc.x) * (x - cyc.x));
175 }
//几何模板
 1 const double eps=1e-9;
 2 int gauss(double a[N][N],bool *l,double *ans,int n)
 3 {
 4     int res = 0, r = 0;
 5     for (int i = 0; i < n; i++)
 6         l[i] = false; //全部初始化为自由元
 7     for (int i = 0; i < n; i++)
 8     {
 9         for (int j = r; j < n; j++)
10             if (fabs(a[j][i] > eps))
11             {
12                 for (int k = i; k <= n; k++)
13                     swap(a[j][k], a[r][k]);
14                 break;
15             }
16         if (fabs(a[r][i]) < eps)
17         {
18             res++;
19             continue;
20         }
21         for (int j = 0; j < n; j++)
22             if (j != r && fabs(a[j][i]) > eps)
23             {
24                 double tmp = a[j][i] / a[r][i];
25                 for (int k = i; k <= n; k++)
26                     a[j][k] -= tmp * a[r][k];
27             }
28         l[i] = true;
29         r++;
30     }
31     for (int i = 0; i < n; i++)
32         if (l[i])
33             for (int j = 0; j < n; j++)
34                 if (fabs(a[j][i]) > 0)
35                     ans[i] = a[j][n] / a[j][i];
36     return res;
37 }
//gauss消元模板,返回矩阵的秩,l数组标记自由元,ans为结果,n为未知数个数
 1 //若只是记录某个数是否存在可用 bitset优化,原来已存在的数记为 bitset x ;
 2 //则 x中所有标记位为 1的数+a[i]之后变成 x=x<<a[i]|x
 3 //如果数最大小于 64可用 long long代替 bitset,更快,最大小于 128时用__int128
 4 //无限背包有排列种数
 5 //(1,4,9,...,17^2 中可重复选能有多少种方法拼成 1~300,114,141,411,111111 4种拼成 6的方法)
 6 memset(dp,0,sizeof(dp));
 7 dp[0]=1;
 8 for(int i=0;i<=300;i++) //每个数都可以往后面加 1,4,...,17^2
 9 for(int j=1;j*j+i<=300;j++)
10 dp[j*j+i]+=dp[i];//取多少个 i
11 //无限背包组合种数
12 //(1,4,9,...,17^2 中可重复选能有多少种方法拼成 1~300,114,111111 2种拼成 6的方法)
13 memset(dp,0,sizeof(dp));
14 dp[0]=1;
15 for(int i=1;i*i<=300;i++)//取的数递增,即取了 1后只能取 4再 9再...,不能继续取 1了
16 for(int j=0;j+i*i<=300;j++)
17 dp[j+i*i]+=dp[j];
18 将 n拆分为 m个数(n个相同的球放入 m个盒子)的组合方法数<=>将 n拆分为最大数为 m相加的组合方法数
19 推论: 设 m<=n,n拆分成最多 m个数的和的拆分数等于将 n拆分成最大数不超过 m的拆分数
无限背包计数
  1 #include <bits/stdc++.h>
  2 typedef long long LL;
  3 const int N=1e6+10;
  4 int cas=1,T;
  5 int m,n;
  6 char s[40][40];
  7 LL dp[2][N];
  8 const int HASH=30007;
  9 int head[HASH],next[N],state[2][N],hn[2];
 10 inline int insert(int s,int *state,LL *dp)
 11 {
 12     int h = state[s] * 7 % HASH; //必要时乘个质数会散一些,如果还有一个数要变成(state[s]+x*1007)%HASH
 13     int u = head[h];
 14     while (u)
 15     {
 16         if (state[u] == state[s])
 17         {
 18             dp[u] += dp[s];
 19             return 0;
 20         }
 21         u = next[u];
 22     }
 23     next[s] = head[h];
 24     head[h] = s;
 25     return 1;
 26 }
 27 inline void ha(int x,int k,int d,int &h)
 28 {
 29     state[d ^ 1][h] = x;
 30     dp[d ^ 1][h] = dp[d][k];
 31     h += insert(h, state[d ^ 1], dp[d ^ 1]);
 32 }
 33 LL ans[40][40];
 34 int main()
 35 {
 36     while (scanf("%d%d", &n, &m) == 2)
 37     {
 38         for (int i = 0; i < n; i++)
 39             scanf("%s", s[i]);
 40         for (int i = 0; i < n; i++)
 41             for (int j = 0; j < m; j++)
 42                 s[i][j] = (s[i][j] == '.');
 43         int d = 0;
 44         int M = m << 1;
 45         memset(ans, 0, sizeof(ans));
 46         state[0][1] = 0;
 47         dp[0][1] = 1;
 48         hn[0] = 2;
 49         for (int i = 0; i < n; i++)
 50         {
 51 
 52             for (int j = 0; j < m; j++, d ^= 1)
 53             {
 54                 hn[d ^ 1] = 1;
 55                 if (!s[i][j]) //障碍
 56                 {
 57                     for (int k = 1, &h = hn[d ^ 1]; k < hn[d]; k++)
 58                     {
 59                         int t = state[d][k];
 60                         if ((t & (3 << M)) || (t & 3))
 61                             continue;
 62                         state[d ^ 1][h] = t << 2;
 63                         dp[d ^ 1][h] = dp[d][k];
 64                         h++;
 65                     }
 66                     continue;
 67                 }
 68                 memset(head, 0, sizeof(head));
 69                 for (int k = 1, &h = hn[d ^ 1]; k < hn[d]; k++) //每个非障碍格子都可以走
 70                 {
 71                     int t = state[d][k];
 72                     if ((t & (3 << M)) && (t & 3))
 73                     {
 74                         int x = t & 3;
 75                         int y = t & (3 << M);
 76                         t = t ^ x ^ y;
 77                         y >>= M;
 78                         if (x == 1 && y == 2)
 79                         {
 80                             if (t == 0)                //没有没有其它插头时可以是一条(i,j)结束的回路
 81                                 ans[i][j] += dp[d][k]; //()
 82                         }
 83                         else if (x == 2 && y == 1)
 84                             ha(t << 2, k, d, h);   //)(
 85                         else if (x == 2 && y == 2) //))
 86                         {
 87                             for (int l = 2, c = 0; l < M; l += 2) //往前找到匹配的(并改为)
 88                             {
 89                                 if (((t >> l) & 3) == 2)
 90                                     c--;
 91                                 else if (((t >> l) & 3) == 1)
 92                                     c++;
 93                                 if (c == 1)
 94                                 {
 95                                     t = t ^ (3 << l);
 96                                     break;
 97                                 }
 98                             }
 99                             ha(t << 2, k, d, h);
100                         }
101                         else
102                         {
103                             //((
104                             for (int l = M - 2, c = 0; l > 0; l -= 2) //往后找到匹配的)并改为(
105                             {
106                                 if (((t >> l) & 3) == 1)
107                                     c--;
108 
109                                 else if (((t >> l) & 3) == 2)
110                                     c++;
111                                 if (c == 1)
112                                 {
113                                     t = t ^ (3 << l);
114                                     break;
115                                 }
116                             }
117                             ha(t << 2, k, d, h);
118                         }
119                     }
120                     else if (!(t & (3 << M)) && !(t & 3)) //##
121                     {
122                         //if(s[i][j]) ha(t<<2,k,d,h);//不走
123                         if (i + 1 < n && s[i + 1][j] && j + 1 < m && s[i][j + 1])
124                             ha(t << 2 | 6, k, d, h);
125                     }
126                     else
127                     {
128                         //#( #) (# )#
129                         int x = t & 3;
130                         int y = t & (3 << M);
131                         if (x)
132                             t ^= x;
133                         else if (y)
134                             t ^= y, x = y >> M;
135                         if (i + 1 < n && s[i + 1][j])
136                             ha(t << 2 | (x << 2), k, d, h);
137                         if (j + 1 < m && s[i][j + 1])
138                             ha(t << 2 | x, k, d, h);
139                     }
140                 }
141             }
142         }
143         for (int i = n - 1; i >= 0; i--)
144         {
145             for (int j = m - 1; j >= 0; j--)
146                 if (s[i][j])
147                 {
148                     printf("%lld\n", ans[i][j]);
149                     i = -1;
150                     break;
151                 }
152         }
153     }
154     return 0;
155 }
//轮廓线 dp求只有一个闭合回路方法数(括号匹配判断是否形成回路)
 1 int n,a[N],idx[N];
 2 int lbig[N],lsmall[N],rsmall[N],rbig[N],bit[N],id[N];
 3 //lbig左边比当前数大,rbig右边比当前数大(不等于)
 4 LL sum(int x)
 5 {
 6     LL rec = 0;
 7     while (x)
 8     {
 9         rec += bit[x];
10         x -= x & -x;
11     }
12     return rec;
13 }
14 LL add(int x)
15 {
16     while (x <= n)
17     {
18         bit[x]++;
19         x += x & -x;
20     }
21 }
22 void cal()
23 {
24     for (int i = 1; i <= n; i++)
25         idx[i] = a[i];
26     sort(idx + 1, idx + n + 1);
27     memset(bit, 0, sizeof(bit));
28     map<int, int> mp; //用于处理相同数
29     for (int i = 1; i <= n; i++)
30     {
31         id[i] = lower_bound(idx + 1, idx + 1 + n, a[i]) - idx;
32         lsmall[i] = sum(id[i] - 1);
33         add(id[i]);
34         int &x = mp[a[i]];
35         lbig[i] = i - 1 - lsmall[i] - x;
36         x++;
37     }
38     memset(bit, 0, sizeof(bit));
39     mp.clear();
40     for (int i = n; i > 0; i--)
41     {
42         rsmall[i] = sum(id[i] - 1);
43         add(id[i]);
44         int &x = mp[a[i]];
45         rbig[i] = n - i - rsmall[i] - x;
46         x++;
47     }
48 }
//BIT统计逆序对
 1 LL count(LL n,LL num)
 2 {
 3     LL e = 1, ans = 0;
 4     for (int i = 0; n >= e; e *= 10, i++)
 5     {
 6         LL pre = n / e / 10;
 7         LL dig = n / e % 10;
 8         LL suf = n % e;
 9         if (dig > num)
10             pre++;
11         if (!num)
12             pre--; //num==0时去掉前导 0的情况
13         ans += pre * e;
14         if (dig == num)
15             ans += suf;
16     }
17     if (n && !num)
18         ans++; //num==0且 n>0时 0也要算上
19     return ans;
20 }
//数位 dp,数 1~n-1中的数位总共出现了多少个 num(0<=num<=9)
  1 #include <bits/stdc++.h>
  2 using namespace std;
  3 typedef long long LL;
  4 const int N=1e5+10;
  5 const int INF=0x3f3f3f3f;
  6 const int bit=7;
  7 int cas=1,T;
  8 int dp[10][3];
  9 void init()
 10 {
 11     memset(dp, 0, sizeof(dp));
 12     dp[0][2] = 1;
 13     for (int i = 1; i <= bit; i++)
 14     {
 15         dp[i][0] = dp[i - 1][0] * 10 + 2 * dp[i - 1][1] + dp[i - 1][2]; //62,4
 16         dp[i][1] = dp[i - 1][1] + dp[i - 1][2];                         //no62,4 head=2
 17         dp[i][2] = 7 * dp[i - 1][1] + 8 * dp[i - 1][2];                 //no62,4 head!=2
 18     }
 19     //for(int i=1;i<=bit;i++) printf("%d %d %d %d\n",i,dp[i][0],dp[i][1],dp[i][2]);
 20 }
 21 int count(int n)
 22 {
 23     int ans = 0;
 24     for (int i = bit, e = 1e6 + 0.5; i >= 0; i--, e /= 10)
 25     {
 26         if (e > n)
 27             continue;
 28         int pre = n / e % 10;  //当前位数字
 29         ans += pre * dp[i][0]; //0~pre-1 *e
 30         if (pre > 6 || pre == 6 && n * 10 / e % 10 > 2)
 31             ans += dp[i][1];
 32         //6+ no62,4 head=2
 33         当前位 > 6 或者 当前位 = 6且下一位 > 2
 34 
 35                                  if (pre > 4) ans += dp[i][2] + dp[i][1]; //4+ no62,4 head=2 + no62,4, head!=2
 36         if (pre == 4 || n / e % 100 == 62)                                //+ 后边所有
 37         {
 38             ans += n % e;
 39             break;
 40         }
 41     }
 42     return ans;
 43 }
 44 int main()
 45 {
 46     init();
 47     int l, r;
 48     //while(scanf("%d%d",&l,&r)==2 && (l&&r)) printf("%d %d\n",count(r+1),count(l));
 49     while (scanf("%d%d", &l, &r) == 2 && (l && r))
 50         printf("%d\n", r - l + 1 - count(r + 1) + count(l));
 51     return 0;
 52 }
 53 //数位 dp记忆化搜索,从高位往低位搜
 54 //这里是[l,r]中数位中连续奇数数字有偶数个,连续偶数数字有奇数个
 55 //第三维表示数位的数字,还没有数字为 2,奇数为 1,偶数为 0
 56 //第四维表示数位的连续个数,还没有数字为 2,奇数个为 1,偶数个为 0
 57 //第二维表示当前数位为 dig时有多少种
 58 #include <bits/stdc++.h>
 59 using namespace std;
 60 typedef long long LL;
 61 const int N=1e5+10;
 62 const int INF=0x3f3f3f3f;
 63 int cas=1,T;
 64 LL dp[20][10][3][3];//dp[a][b][c][d]记忆化前面数位为 d个 c,当前位为 b,后面有 a个 9时的种数
 65 LL dfs(int n,LL e,LL x,int odd,int even)
 66 {
 67     if (n < 0)
 68         return odd != even;
 69     if (e > x && odd == 2)
 70         return dfs(n - 1, e / 10, x, odd, even);
 71     int dig = x / e % 10;
 72     if ((x + 1) % e == 0 && dp[n][dig][odd][even] != -1)
 73         return dp[n][dig][odd][even]; //如果已经搜过直
 74     接返回
 75     if (odd == 2)
 76     {
 77         //还没有数位时不同转移
 78         LL ans = 0;
 79         ans += dfs(n - 1, e / 10, e - 1, 2, 2); //前导 0,还是没有数位
 80         for (int i = 1; i < dig; i++)
 81             ans += dfs(n - 1, e / 10, (i + 1) * e - 1, i & 1, 1);
 82         ans += dfs(n - 1, e / 10, x % e, dig & 1, 1);
 83         if ((x + 1) % e == 0)
 84             dp[n][dig][odd][even] = ans;
 85         return ans;
 86     }
 87     LL ans = 0;
 88     for (int i = 0; i < dig; i++)
 89         if ((i & 1) == odd || (i & 1) != odd && odd != even)
 90             ans += dfs(n - 1, e / 10, (i + 1) * e - 1, i & 1, ((i & 1) == odd) ? (even ^ 1) : 1);
 91 
 92     if ((dig & 1) == odd || (dig & 1) != odd && odd != even)
 93         ans += dfs(n - 1, e / 10, x % e, dig & 1, ((dig & 1) == odd) ? (even ^ 1) : 1);
 94     if ((x + 1) / 10 == e)
 95         dp[n][dig][odd][even] = ans; //x=a99…99 时记忆化
 96     return ans;
 97 }
 98 int main()
 99 {
100     memset(dp, -1, sizeof(dp));
101     scanf("%d", &T);
102     while (T--)
103     {
104         LL l, r;
105         scanf("%lld%lld", &l, &r);
106         LL lans = dfs(18, 1e18, l - 1, 2, 2);
107         //printf("lans:%lld\n",lans);
108         LL rans = dfs(18, 1e18, r, 2, 2);
109         //printf("rans:%lld\n",rans);
110         printf("Case #%d: %lld\n", cas++, rans - lans);
111     }
112     return 0;
113 }
//数位 dp模板(递推过程),考虑前导 0是注意 0~9999…9999 这种的处理 //这里是算[l,r]中没有 62也没有 4的个数,从低位往高位推,每次在最高位加一个数字进行转移
TSP问题:有 n个城市,两两之间均有道路相连,距离为 dis(i,j),求最短的路径经过每个点一次并回到原点
做法:状压 dp,O(n*2^n)
如果给定起点和终点 s,e,则可以用 O(n^2)dp 解决,每次在当前最小路径中插入下一个点获得加一个点进来后的最
小路径
//圆周涂色
把一个圆分成 n个扇形,每个扇形可以涂 m种颜色,要求相邻的颜色互不相同,有多少种涂法?
把 n个扇形的涂法记为 f(n),则 f(n)+f(n-1)=m*(m-1)^(n-1),包含第一个和第 n个扇形涂色相同的情况,相当于
将第 1个扇形和第 n个扇形合并成一个扇形的涂法,化简得 f(n)=(m-1)^n+(n&1?-1:1)*(m-1);
 1 const int M=75;
 2 int
 3 ro[3][M]={{0,10,11,12,13,14,15,16,17,18,46,47,48,49,50,51,52,53,54,25,22,19,26,23,20,27,24,
 4 21,9,8,7,6,5,4,3,2,1,39,42,45,38,41,44,37,40,43,36,35,34,33,32,31,30,29,28,//3*3*6=54个方格
 5 63,59,55,62,64,56,58,66,65,60,57,61,
 6 //十二条边
 7 71,72,68,67,74,73,69,70},//8个顶点
 8 {0,43,40,37,44,41,38,45,42,39,16,13,10,17,14,11,18,15,12,7,4,1,8,5,2,9,6,3,30,33,36,29,32,3
 9 5,28,31,34,52,49,46,53,50,47,54,51,48,25,22,19,26,23,20,27,24,21,
10 62,58,61,66,55,57,65,63,59,56,60,64,
11 71,67,70,74,72,68,69,73},
12 {0,7,4,1,8,5,2,9,6,3,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,4
13 2,43,44,45,10,11,12,13,14,15,16,17,18,48,51,54,47,50,53,46,49,52,
14 56,57,58,55,60,61,62,59,64,65,66,63,
15 68,69,70,67,72,73,74,71}};
16 
17  
18 int pu[M],t[M],pemu[100][M],pn;
19 void count(int *v)
20 {
21     int vis[M];
22     memset(vis, 0, sizeof(vis));
23     for (int i = 1; i < M; i++)
24         if (!vis[i])
25         {
26             int c = 0;
27             int u = i;
28             while (!vis[u])
29             {
30                 vis[u] = 1;
31                 u = pu[u];
32                 c++;
33             }
34             v[c]++;
35         }
36 }
37 void init()
38 {
39     memset(pemu, 0, sizeof(pemu));
40     pn = 0;
41     set<LL> s;
42     map<int, int> cc;
43     for (int i = 0; i < M; i++)
44         pu[i] = i;
45     for (int i = 1; i <= 4; i++)
46     {
47         for (int l = 1; l < M; l++)
48             t[l] = pu[ro[0][l]];
49         memcpy(pu, t, sizeof(pu));
50         for (int j = 1; j <= 4; j++)
51         {
52             for (int l = 1; l < M; l++)
53                 t[l] = pu[ro[1][l]];
54             memcpy(pu, t, sizeof(pu));
55             for (int k = 1; k <= 4; k++)
56             {
57                 for (int l = 1; l < M; l++)
58                     t[l] = pu[ro[2][l]];
59                 memcpy(pu, t, sizeof(pu));
60                 //printf("i:%d j:%d k:%d\n",i,j,k);
61                 LL ha = 0;
62                 for (int l = 1; l < M; l++)
63                     ha = ha * 1000007 + pu[l];
64                 //for(int l=1;l<=12;l++) printf("%d ",pu[l]);printf("\n");
65                 if (s.count(ha))
66                     continue;
67                 s.insert(ha);
68                 count(pemu[pn]);
69                 int sum = 0;
70                 for (int l = 1; l < M; l++)
71                     printf("%d ", pemu[pn][l]), sum += pemu[pn][l];
72                 printf("\n");
73                 cc[sum]++;
74                 pn++;
75             }
76         }
77     }
78     for (map<int, int>::iterator it = cc.begin(); it != cc.end(); it++)
79         printf("%d %d\n", it->first, it->second);
80     printf("%d\n", s.size());
81 }
//置换打表
 1 //f(n)=a*x^n+b*x^n,得到 f(n)=c1*f(n-1)+c2*f(n-2),a*x^n=f(n)-b*x^n
 2 //求 a^n%mod用矩阵快速幂求解 f(n)时 f(n)%mod的循环节为(mod*mod-1),最小循环节是(mod*mod-1)的约数
 3 //即 f(n)%mod=f(n%(mod*mod-1))%mod
 4 //当循环节为 p时 f(0)==f(p) && f(1)==f(p+1)
 5 //可以暴力找循环节
 6 const int M=2;
 7 struct mar
 8 {
 9     LL a[M][M];
10     mar operator*(const mar &b)
11     {
12         mar ans;
13         memset(&ans, 0, sizeof(ans));
14         for (int i = 0; i < M; i++)
15             for (int j = 0; j < M; j++)
16                 for (int k = 0; k < M; k++)
17                     ans.a[i][j] = (ans.a[i][j] + a[i][k] * b.a[k][j]) % mod;
18         return ans;
19     }
20 };
21 LL a[M]={2,1};//递推式 f(n)=a[0]f(n-1)+a[1]f(n-2)+...+a[M-1]f(n-M)
22 LL f[M]={1,0};//f[0]=f(M-1),f[1]=f(M-2),...,f(M-2)=f(1),f(M-1)=f(0) 倒过来的
23 LL mar_pow(LL n)
24 {
25     mar ans, t;
26     memset(&ans, 0, sizeof(ans));
27     memset(&t, 0, sizeof(t));
28     for (int i = 0; i < M; i++)
29         ans.a[i][i] = 1; //单位矩阵,相当于快速幂中初始化为 1
30     memcpy(t.a[0], a, sizeof(a));
31     for (int i = 1; i < M; i++)
32         t.a[i][i - 1] = 1;
33     while (n)
34     {
35         if (n & 1)
36             ans = ans * t;
37         t = t * t;
38         n >>= 1;
39     }
40     LL res = 0;
41     for (int i = 0; i < M; i++)
42         res = (res + ans.a[M - 1][i] * f[i]) % mod;
43     //f(n)=f(n-1)*ans.a[M-1][i]+...+f(0)*ans.a[M-1][0];
44     return res;
45 }
//通用矩阵快速幂
 1 void dfs(int x)
 2 {
 3     int pos = upper_bound(b + 1, b + 1 + n, k / a[x]) - b - 1;
 4     ans -= sum(pos);
 5     for (int i = 0; i < u[x].size(); i++)
 6         dfs(u[x][i]);
 7     ans += sum(pos);
 8     add(upper_bound(b + 1, b + 1 + n, a[x]) - b - 1);
 9 }
10 struct node
11 {
12     int i, x, pos;
13 };
14 void slove(int x)//由上面的 dfs改成的手写栈
15 {
16     stack<node> s;
17     int pos = upper_bound(b + 1, b + 1 + n, k / a[x]) - b - 1;
18     s.push(node{0, x, pos});
19     while (!s.empty())
20     {
21         node v = s.top();
22         s.pop();
23         if (v.i == u[v.x].size()) //dfs结束时
24         {
25             ans += sum(v.pos);
26             add(upper_bound(b + 1, b + 1 + n, a[v.x]) - b - 1);
27             continue; //return
28         }
29         x = u[v.x][v.i++]; //子树
30         s.push(v);
31         pos = upper_bound(b + 1, b + 1 + n, k / a[x]) - b - 1;
32         ans -= sum(pos);
33         s.push(node{0, x, pos}); //子树节点入栈
34     }
35 }
//dfs改手写栈
求<=n中除 p外所有质数的乘积%p
要解决这个问题首先要理解一个动态规划的定义,定义 S(v,p)为 1−v 中经过小于等于 p 的素数筛过之后的数的个数,
即此时整个数集里只包含<=p 的素数以及素因子>p 的数。
相应的有状态转移 S(v,p)=S(v,p−1)–(S(v/p,p−1)−S(p−1,p−1))
相应的可以定义状态 F(v,p)为 1−v 中经过小于等于 p 的素数筛过之后的数的乘积。相应的转移方程为:
F(v,p)=F(v,p−1)/(F(v/p,p−1)/F(p−1,p−1)∗pS(v/p,p−1)−S(p−1,p−1))
原题中要模的是 M,所以在定义 S(v,p)和相应的 F(v,p)时应当改为 1−v 中(除了 M,2M…)经过小于等于 p 的素数筛过
之后的数的个数,以及这些数的乘积,这个实际上影响到的是初始化的阶段。
实现上由于 v 的取值只需要用到 n/1,n/2…的值,所以分别用 l,h 的两种数组记录,其中 cl[x]表示的 S(x,p),ch[x]表示
S(n/x,p),pl[x]表示 F(x,p),ph[x]表示 F(n/x,p)。
 1 syntax on
 2 "高亮
 3 set nu
 4 "显示行号
 5 set softtabstop=4
 6 set shiftwidth=4
 7 set smartindent
 8 set scrolloff=7
 9 set mouse=a
10 "按 tab缩进 4个空格大小
11 "默认缩进 4个空格大小(indent的缩进)
12 "自动缩进
13 "光标移动到 buffer的顶部和底部时保持 7行距离
14 "鼠标所有功能可用
15 set cursorline
16 "当前行下划线划出
17 "出现 swap文件时用这个
18 set nobackup
19 set noswapfile
20 winpos -4 -4
21 "设置窗口位置,使用 vim时自动最大化窗口
22 set lines=50 columns=200 "设定窗口大小 "按 F5编译运行
23 set guifont=UbuntuMono\ 14
24 colorscheme desert
25 "Ubuntu下 GVIM设置英文字体,字体名和字体大小
26 "F5编译运行
27 "w保存文本 ! g++ % -o %< 编译代码 ! ./%< linux执行 ! %<.exe windows执行
28 map <F5> :call Compile()<CR>
29 func Compile()
30 :w
31 :! g++ -std=c++11 % -o %<
32 :! ./%<
33 endfunc
34 "noremap insert模式(打字时的模式)下映射
35 "vmap/vnoremap visaul模式(选择时的模式)下映射
36 "map/nnoremap normal模式(按下 Esc后的模式)下映射
37 map <C-a> ggVG
38 vmap <C-c> "+y
39 map <C-v> "+p
40 map zz I//<Esc>
41 "Ctrl+a全选
42 "Ctrl+c选择后复制,可粘贴到外编辑器,如果只在 vim中粘贴按 y复制即可
43 "Ctrl+v normal模式下粘贴外部复制的文本
44 "zz行首注释
45 map tt I<Right><Right><Backspace><Backspace><Esc> "tt取消注释
46 "cpp文件自动输出,F2手动输出
47 auto BufNewFile *.cpp exec ":call Preset()"
48 map<F2> :call Preset()<CR>
49 func Preset()
50 "setline将当前行设为字符串,append在当前行后追加
51 call setline(line("."),"#include <bits/stdc++.h>")
52 let l=line(".")-1
53 let l=l+1 | call append(l,"using namespace std;")
54 let l=l+1 | call append(l,"typedef long long LL;")
55 let l=l+1 | call append(l,"const int N=1e5+10;")
56 let l=l+1 | call append(l,"const int INF=0x3f3f3f3f;")
57 
58  
59 let l=l+1 | call append(l,"const int mod=1e9+7;")
60 let l=l+1 | call append(l,"int cas=1,T;")
61 let l=l+1 | call append(l,"int main()")
62 let l=l+1 | call append(l,"{")
63 let l=l+1 | call append(l," //freopen(\"in\",\"r\",stdin);")
64 let l=l+1 | call append(l," //scanf(\"%d\",&T);")
65 let l=l+1 | call append(l," return 0;")
66 let l=l+1 | call append(l,"}")
67 endfunc
68 """""""""""下面的不需要用到就不要打了
69 "F3输出头文件,bits/stdc++.h可用时不需要
70 map <F3> :call AddHeader()<CR>
71 func! AddHeader()
72 call setline(line("."),"#include <cstdio>")
73 let l=line(".")-1
74 let l=l+1 | call append(l,"#include <queue>")
75 let l=l+1 | call append(l,"#include <cstring>")
76 let l=l+1 | call append(l,"#include <string>")
77 let l=l+1 | call append(l,"#include <iostream>")
78 let l=l+1 | call append(l,"#include <cstdlib>")
79 let l=l+1 | call append(l,"#include <algorithm>")
80 let l=l+1 | call append(l,"#include <vector>")
81 let l=l+1 | call append(l,"#include <map>")
82 let l=l+1 | call append(l,"#include <set>")
83 let l=l+1 | call append(l,"#include <ctime>")
84 let l=l+1 | call append(l,"#include <cmath>")
85 let l=l+1 | call append(l,"#include <cctype>")
86 endfunc
87 "set guifont=Consolas:h14:cANSI
88 "windows下设置英文字体,字体名和字体大小
"Vim配置,引号开头的是注释,不用打
 1 1)、单点增减+区间求和
 2 思路:C[x]表示该点的元素:sum(x)=C[1]+C[2]+……C[x]
 3 int arr[MAXN];
 4 inline int sum(int x){
 5     int res = 0;
 6     while (x)
 7         res += arr[x], x -= lowbit(x);
 8     return res;}
 9 inline void add(int x,int n){
10     while (x < MAXN)
11         arr[x] += n, x += lowbit(x);}
12 inline int query(int x,int y){
13     return sum(y) - sum(x - 1);}
142)、区间增减+单点查询
15 思路:C[x]表示该点元素与左边元素的差值:num[x]=C[1]+C[2]+……C[x]
16 int arr[MAXN]
17 inline int sum(int x){
18     int res = 0;
19     while (x)
20         res += arr[x], x -= lowbit(x);
21     return res;}
22 inline void add(int x,int n){
23     while (x < MAXN)
24         arr[x] += n, x += lowbit(x);}
25 inline int update(int x,int y,int n){
26     add(x, n);
27     add(y + 1, -n);}
283)、区间增减+区间查询
29 思路:C1[x]表示该点元素与左边的差值,C2[x]表示的是 x*C[x]
30 sum(sum(C[j],j<=i)i<=x)
31 = x*C[1]+(x-1)*C[2]+……+C[x]
32 =(x+1)*sum(C[i],i<=x)-sum(i*C[i],i<=x);
33 则可以想到用 C1[x]维护 C[x]的值,C2[x]维护 x*C[X]的值
34 template <typename X>
35 struct tree_array{
36     struct tree_array_single
37     {
38         X arr[MAXN];
39 
40         void add(int x, X n)
41         {
42             while (x <= N)
43                 arr[x] += n, x += lowbit(x);
44         }
45         X sum(int x)
46         {
47             X sum = 0;
48             while (x)
49                 sum += arr[x], x -= lowbit(x);
50             return sum;
51         }
52     } T1, T2;
53     void reset()
54     {
55         CLR(T1.arr, 0);
56         CLR(T2.arr, 0);
57     }
58     void add(int x, X n)
59     {
60         T1.add(x, n);
61         T2.add(x, x * n);
62     }
63     void update(int L, int R, int n)
64     {
65         add(L, n);
66         add(R + 1, -n);
67     }
68     X sum(int x) { return (x + 1) * T1.sum(x) - T2.sum(x); }
69     X query(int L, int R) { return sum(R) - sum(L - 1); }
70 };
14、树状数组
  1 ①单点增减(add) + 矩形求和(query)
  2 ②矩形增减(update) + 单点求值(sum)
  3 int arr[MAXN][MAXN]
  4 inline void add(int x,int y,int n) {
  5     for (int i = x; i < MAXN; i += lowbit(i))
  6         for (int j = y; j < MAXN; j += lowbit(j))
  7             arr[i][j] += n;
  8 }
  9 inline int sum(int x,int y){
 10     int res = 0;
 11     for (int i = x; i; i -= lowbit(i))
 12         for (int j = y; j; j -= lowbit(j))
 13             res += arr[i][j];
 14     return res;
 15 }
 16 inline int query(int L,int B,int R,int T) {
 17     return sum(R, T) + sum(L - 1, B - 1) - sum(R, B - 1) - sum(L - 1, T);
 18 }
 19 inline void update(int L,int B,int R,int T,int n){
 20     update(L, B, n);
 21     update(L, T + 1, n);
 22     update(R + 1, B, n);
 23     update(R + 1, T + 1, n);
 24 }
 25 ③矩形增减(update)+ 矩形求和(query)
 26 template<typename X>
 27 class tree_array{
 28     struct tree_array_single
 29     {
 30         X arr[MAXN][MAXN];
 31         void add(int x, int y, X n)
 32         {
 33             for (int i = x; i < MAXN; i += lowbit(i))
 34                 for (int j = y; j < MAXN; j += lowbit(j))
 35                     arr[i][j] += n;
 36         }
 37         X sum(int x, int y)
 38         {
 39             X res = 0;
 40             for (int i = x; i; i -= lowbit(i))
 41                 for (int j = y; j; j -= lowbit(j))
 42 
 43                     res += arr[i][j];
 44             return res;
 45         }
 46     } T1, T2, T3, T4;
 47     void add(int x, int y, int n)
 48     {
 49         T1.add(x, y, n);
 50         T2.add(x, y, y * n);
 51         T3.add(x, y, x * n);
 52         T4.add(x, y, x * y * n);
 53     }
 54     X sum(int x, int y)
 55     {
 56         return (x + 1) * (y + 1) * T1.sum(x, y) - (x + 1) * T2.sum(x, y) - (y + 1) * T3.sum(x, y) + T4.sum(x, y);
 57     }
 58 
 59   public:
 60     void init()
 61     {
 62         CLR(T1.arr, 0);
 63         CLR(T2.arr, 0);
 64         CLR(T3.arr, 0);
 65         CLR(T4.arr, 0);
 66     }
 67     void update(int L, int B, int R, int T, int n)
 68     {
 69         add(L, B, n);
 70         add(L, T + 1, -n);
 71         add(R + 1, B, -n);
 72         add(R + 1, T + 1, n);
 73     }
 74     X query(int L, int B, int R, int T)
 75     {
 76         return sum(R, T) - sum(L - 1, T) - sum(R, B - 1) + sum(L - 1, B - 1);
 77     }
 78 };
 79 ④单点增减(add) + 立方体求和(query)
 80 ⑤立方体增减(update) + 单点求值(sum)
 81 int arr[MAXN][MAXN][MAXN];
 82 inline int sum(int x,int y,int z){
 83     int res = 0;
 84     for (int i = x; i; i -= lowbit(i))
 85         for (int j = y; j; j -= lowbit(j))
 86             for (int k = z; k; k -= lowbit(k))
 87                 res ^= arr[i][j][k];
 88     return res;
 89 }
 90 inline void add(int x,int y,int z,int n){
 91     for (int i = x; i < MAXN; i += lowbit(i))
 92         for (int j = y; j < MAXN; j += lowbit(j))
 93             for (int k = z; k < MAXN; k += lowbit(k))
 94                 arr[i][j][k] += n;
 95 }
 96 inline void update(int x1,int y1,int z1,int x2,int y2,int z2,int n){
 97     add(x1, y1, z1, n);
 98     add(x2 + 1, y1, z1, -n);
 99     add(x1, y2 + 1, z1, -n);
100     add(x1, y1, z2 + 1, -n);
101     add(x2 + 1, y2 + 1, z1, n);
102     add(x2 + 1, y1, z2 + 1, n);
103     add(x1, y2 + 1, z2 + 1, n);
104     add(x2 + 1, y2 + 1, z2 + 1, -n);
105 }
106 inline int query(int x1,int y1,int z1,int x2,int y2,int z2){
107     return sum(x2, y2, z2) - sum(x2, y2, z1 - 1) - sum(x2, y1 - 1, z2) - sum(x1 - 1, y2, z2) + sum(x2, y1 - 1, z1 - 1) + sum(x1 - 1, y2, z1 - 1) + sum(x1 - 1, y1 - 1, z2) - sum(x1 - 1, y1 - 1, z1 - 1);
108 }
109 
110  
111 ⑥立方体增减(update) + 立方体求和(query)///随便写写……复杂度较高
112 template<typename X>
113 class tree_array_Cube{
114     struct tree_array_single
115     {
116         X arr[MAXN][MAXN][MAXN];
117         X sum(int x, int y, int z)
118         {
119             X res = 0;
120             for (int i = x; i; i -= lowbit(i))
121                 for (int j = y; j; j -= lowbit(j))
122                     for (int k = z; k; k -= lowbit(k))
123                         res += arr[i][j][k];
124             return res;
125         }
126         void add(int x, int y, int z, X n)
127         {
128             for (int i = x; i < MAXN; i += lowbit(i))
129                 for (int j = y; j < MAXN; j += lowbit(j))
130                     for (int k = z; k < MAXN; k += lowbit(k))
131                         arr[i][j][k] += n;
132         }
133     } T1, T2, T3, T4, T5, T6, T7, T8;
134     void add(int x, int y, int z, X n)
135     {
136         T1.add(x, y, z, n);
137         T2.add(x, y, z, x * n);
138         T3.add(x, y, z, y * n);
139         T4.add(x, y, z, z * n);
140         T5.add(x, y, z, x * y * n);
141         T6.add(x, y, z, y * z * n);
142         T7.add(x, y, z, x * z * n);
143         T8.add(x, y, z, x * y * z * n);
144     }
145     X sum(int x, int y, int z)
146     {
147         return (x + 1) * (y + 1) * (z + 1) * T1.sum(x, y, z) - (y + 1) * (z + 1) * T2.sum(x, y, z) - (x + 1) * (z + 1) * T3.sum(x, y, z) - (x + 1) * (y + 1) * T4.sum(x, y, z) + (z + 1) * T5.sum(x, y, z) + (x + 1) * T6.sum(x, y, z) + (y + 1) * T7.sum(x, y, z) - T8.sum(x, y, z);
148     }
149 
150   public:
151     void init()
152     {
153         CLR(T1.arr, 0);
154         CLR(T2.arr, 0);
155         CLR(T3.arr, 0);
156         CLR(T4.arr, 0);
157         CLR(T5.arr, 0);
158         CLR(T6.arr, 0);
159         CLR(T7.arr, 0);
160         CLR(T8.arr, 0);
161     }
162     void update(int x1, int y1, int z1, int x2, int y2, int z2, X n)
163     {
164         add(x1, y1, z1, n);
165         add(x2 + 1, y1, z1, -n);
166         add(x1, y2 + 1, z1, -n);
167         add(x1, y1, z2 + 1, -n);
168         add(x2 + 1, y2 + 1, z1, n);
169         add(x2 + 1, y1, z2 + 1, n);
170         add(x1, y2 + 1, z2 + 1, n);
171         add(x2 + 1, y2 + 1, z2 + 1, -n);
172     }
173     X query(int x1, int y1, int z1, int x2, int y2, int z2)
174     {
175         return sum(x2, y2, z2) - sum(x2, y2, z1 - 1) - sum(x2, y1 - 1, z2) - sum(x1 - 1, y2, z2) + sum(x2, y1 - 1, z1 - 1) + sum(x1 - 1, y2, z1 - 1) + sum(x1 - 1, y1 - 1, z2) - sum(x1 - 1, y1 - 1, z1 - 1);
176     }
177 };
15、多维树状数组
 1 inline void init()
 2 {
 3     CLR(arr, 0);
 4     for (int i = 1; i <= N; ++i)
 5         for (int j = i; j <= N && arr[j] < num[i]; j += lowbit(j))
 6             arr[j] = num[i];
 7 }
 8 inline int query(int L,int R)
 9 {
10     int res = 0;
11     for (--L; L < R;)
12     {
13         if (R - lowbit(R) >= L)
14         {
15             res = max(res, arr[R]);
16             R -= lowbit(R);
17         }
18         else
19         {
20             res = max(res, num[R]);
21             --R;
22         }
23     }
24     return res;
25 }
26 inline void update(int x,int val)
27 {
28     int ori = num[x];
29     num[x] = val;
30     if (val >= ori)
31         for (int i = x; i <= N && arr[i] < val; i += lowbit(i))
32             arr[i] = val;
33     else
34     {
35         for (int i = x; i <= N && arr[i] == ori; i += lowbit(i))
36         {
37             arr[i] = val;
38             for (int j = lowbit(i) >> 1; j; j >>= 1)
39                 arr[i] = max(arr[i], arr[i - j]);
40         }
41     }
42 }
16、树状数组—区间最大值

 

posted @ 2017-05-08 23:21  cdongyang  阅读(290)  评论(0编辑  收藏  举报