gcd(欧几里得算法)与exgcd(扩展欧几里得算法)
欧几里得算法:
1.定义:gcd的意思是最大公约数,通常用扩展欧几里得算法求
原理:gcd(a, b)=gcd(b, a%b)
2.证明:
令d=gcd(a, b) => a=m*d,b=n*d
则m*d=t*n*d+a%b => a%b=d*(m-t*n)
gcd(b, a%b)=gcd(n*d, (m-t*n)*d)
令gcd(n, m-t*n)=e => n=x*e,m-t*n=y*e
则m-x*e*n=y*e => m=e*(x*n+y)
由gcd(n, m)=1知gcd(e*(x*n+y), e*x)=1
故e=1
故gcd(n*d, (m-t*n)*d)=d即gcd(b, a%b)=gcd(a, b)
3.边界:
当b=0时return a
可以视为gcd(a, 0)=a,任何数都能整除0
也可以视为gcd(a, b)=b,这里的a和b是上一层的,满足a%b=0
4.特殊情况:
当a<b时,a%b=a,所以在下一层gcd(b, a%b)中相当于把a与b交换
5.代码:
1 int gcd(int a,int b){ return b ? gcd(b,a%b) : a;}
扩展欧几里得算法:
1.丢番图方程:
有一个或者几个变量的整系数方程,它们的求解仅仅在整数范围内进行。
扩展欧几里得算法研究的是形如 a*x+b*y=c 的丢番图方程的解
2.裴蜀定理:
对于正整数a和b,令gcd(a, b)=d,则对于任意整数x和y,都有d|(a*x+b*y)
证明:
令a=n*d,b=m*d,则a*x+b*y=d*n*x+d*m*y
显然d|(d*n*x+d*m*y)
3.引理:
丢番图方程 a*x+b*y=c 有解当且仅当d|c
对于任意整数x和y,a*x+b*y的最小正值为gcd(a, b)
证明:
①必要性:
由裴蜀定理,不存在整数x和y,使得d不整除(a*x+b*y)
②充分性:
要证a*x+b*y=c有解,只需a*x+b*y=d有解
令对于任意整数x和y,a*x+b*y能得到的最小正值为s
由裴蜀定理,d|s,则d<=s
令q=⌊a/s⌋,p=a%s
则p=a-q*(a*x+b*y)=a*(1-q*x)-q*b*y=a*(1-q*x)+b*(-q*y)
由p=a%s知0<=p<s
又s为a*x+b*y能得到的最小正值
故p=0,即s|a
同理,s|b,即s|d,故s<=d
综上,s=d
即对于任意整数x和y,a*x+b*y能得到的最小正值为d
故存在整数x和y,使a*x+b*y=d
即存在整数x和y,使a*x+b*y=c
4.扩展欧几里得算法:
通常将求解a*x+b*y=c转化为求解a*x+b*y=gcd(a, b),得解后乘上c/gcd(a, b)即可
令
a*x1+b*y1=gcd(a, b)
b*x2+(a%b)*y2=gcd(b, a%b)
由gcd(a,b)=gcd(b,a%b)知
a*x1+b*y1=b*x2+(a%b)*y2
=b*x2+(a-b*⌊a/b⌋)*y2=a*y2+b*(x2-⌊a/b⌋*y2)
故x1=y2,y1=(x2-⌊a/b⌋*y2)
如此递归直至边界情况
5.边界:
当b=0时,gcd(a, b)=a(任何数都能整除0)
a*x+b*y=a*x=gcd(a, b)*x
若使a*x+b*y=gcd(a, b),只需x=1,y可以为任何值,通常设为0,减少溢出的风险
y的多值对应方程的多解
6.通解:
对于对于第一个解x0和y0,其他解可以表示为x0+(b/d)*k和y0-(a/d)*k
推导:
令a*(x+m)+b*(x-n)=d
=> a*m=b*n => m/n=b/a
因gcd(a, b)=d,m和n均为整数
故m和n的最小值分别为b/d和a/d
若要求其中一个解为正整数,可在得到负解后用通解转化为正数
7.代码:
1 void exgcd(int a,int b,int &x,int &y){ 2 if(!b){ 3 x=1,y=0; 4 return ; 5 } 6 exgcd(b,a%b,x,y); 7 int z=x; 8 x=y,y=(z-a/b*y); 9 }
8.易错点:
算法中存在乘法,有溢出的风险,应见机开long long
例题:
洛谷4549 裴蜀定理
洛谷1516 青蛙的约会
洛谷3951 小凯的疑惑
洛谷1082 同余方程