9、主成分分析

一、用自己的话描述出其本身的含义:

1、特征选择

  从多个特征中选择一部分特征作为训练集的特征,特征在选择前后不改变值。

2、PCA

  PCA是特征降维,降维是从一个维度空间映射到另一个维度空间,也就是高维度数据集映射到低维度空间的同时,尽可能的保留的变量。

二、并用自己的话阐述出两者的主要区别

  特征选择:是从所有特征中选择一 部分特征作为训练集特征,没有改变特征原来的形式,特征量减少。

  PCA:是从一个维度空间映射到另一个维度空间,改变了特征原来的形式,特征多少没有改变。

posted @ 2020-05-01 17:20  虚鲲  阅读(124)  评论(0编辑  收藏  举报