数据的随机性
链接:https://www.nowcoder.com/acm/contest/144/J
来源:牛客网
题目描述
skywalkert, the new legend of Beihang University ACM-ICPC Team, retired this year leaving a group of newbies again.
To prove you have at least 0.1% IQ of skywalkert, you have to solve the following problem:
Given n positive integers, for all (i, j) where 1 ≤ i, j ≤ n and i ≠ j, output the maximum value among . means the Lowest Common Multiple.
Rumor has it that he left a heritage when he left, and only the one who has at least 0.1% IQ(Intelligence Quotient) of his can obtain it.
To prove you have at least 0.1% IQ of skywalkert, you have to solve the following problem:
Given n positive integers, for all (i, j) where 1 ≤ i, j ≤ n and i ≠ j, output the maximum value among . means the Lowest Common Multiple.
输入描述:
The input starts with one line containing exactly one integer t which is the number of test cases. (1 ≤ t ≤ 50)7
For each test case, the first line contains four integers n, A, B, C. (2 ≤ n ≤ 10
, A, B, C are randomly selected in unsigned 32 bits integer range)
The n integers are obtained by calling the following function n times, the i-th result of which is ai, and we ensure all ai > 0. Please notice that for each test case x, y and z should be reset before being called.
No more than 5 cases have n greater than 2 x 106
.
输出描述:
For each test case, output "Case #x: y" in one line (without quotes), where x is the test case number (starting from 1) and y is the maximum lcm.
示例1
输出
复制Case #1: 68516050958 Case #2: 5751374352923604426
题意 : 给你一个一种随机数据的方式,然后按照他的要求去产生一系列的数,问产生的任意两个数的终 lcm 最大是多少?
思路分析 :注意此题有个特点,就是A, B, C是随机产生的,这就代表了数据是有一定随机性质的,那么通常我们随机两个数是互质的概率是 6/(pi*pi) ,因此只要取个前 100 个最大的数,然后暴力去查一下即可。
注意 : 就是当循环很大的时候,不要用 STL 中的函数,会超时!!!
代码示例:
#define ll unsigned long long ll n; unsigned x, y, z; priority_queue<unsigned int, vector<unsigned int>, greater<unsigned int> >que; unsigned arr[105]; ll gcd(ll a, ll b){ return b==0?a:gcd(b, a%b); } ll lcm(ll a, ll b){ return a/gcd(a, b)*b; } int main() { //freopen("in.txt", "r", stdin); //freopen("out.txt", "w", stdout); ll t; ll kas = 1; ll f1, f2; cin >> t; while(t--){ scanf("%llu%u%u%u", &n, &x, &y, &z); while(!que.empty()) que.pop(); for(ll i = 1; i <= n; i++){ x ^= x<<16; x ^= x>>5; x ^= x<<1; unsigned f = x; x = y; y = z; z = f^x^y; if (que.size() < 100) que.push(z); else { unsigned num = que.top(); if (z > num) { que.pop(); que.push(z); } } } ll k = 1; while(!que.empty()) { arr[k++] = que.top(); que.pop(); } ll ans = 0; for(ll i = 1; i < k; i++){ for(int j = i+1; j < k; j++){ ll x = lcm((ll)arr[i], (ll)arr[j]); if (ans < x) ans = x; } } printf("Case #%llu: %llu\n", kas++,ans); } return 0; }
东北日出西边雨 道是无情却有情